5. Bar AB rotates uniformly about the fixed pin A with a constant angular velocity ω . Determine the velocity and acceleration of block C, at the instant $\theta = 60$.

Determine the velocity of block D if end A of the rope is pulled down with speed of v_A = 3 m/s.

M-W-132 4

No. of Printed Pages: 05 Roll No.

W-132

B. Tech. (Weekend)

EXAMINATION, Dec. 2018

(First Semester)

(Re-appear Only)

(ME)

MEW103

ENGINEERING MECHANICS

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt any *Five* questions.

Determine the horizontal and vertical components of reaction at the pin A and reaction on the beam at C.
 20
 (2-38/17) M-W-132
 P.T.O.

2. Explain how the couple is a free vector?

Determine the resultant couple moment acting on the triangular plate:

20

3. Locate the centroid of the shaded area. 20

4. Determine the force in each member of the truss. Also state whether the members are in tension or compression.20

(2-38/18) M-W-132

3

P.T.O.

7. Explain the term virtual displacement. Calculate the relation between active force P and Q for equilibrium of the system of bars shown in Fig. The bars are so arranged that they form three identical rhombuses.

8. Explain any four of the following:

- (a) D'Alembert principle
- (b) Principles of minimum potential energy
- (c) Coriolis force
- (d) Moment of mass and area inertia
- (e) Hamilton principle. 20

7. Explain the term virtual displacement. Calculate the relation between active force P and Q for equilibrium of the system of bars shown in Fig. The bars are so arranged that they form three identical rhombuses.

8. Explain any four of the following:

- (a) D'Alembert principle
- (b) Principles of minimum potential energy
- (c) Coriolis force
- (d) Moment of mass and area inertia
- (e) Hamilton principle. 20