
4. What do you understand by inertia tensor? Determine moment of inertia of the composite area about y axis.

Section III

5. When the bicycle passes point A, it has a speed of 6 m/s, which is increasing at the rate of $\dot{v} = 0.5 \text{m/s}^2$, determine the magnitude of its acceleration when it is at point A. 15

M-C-33 4

No. of Printed Pages: 06 Roll No.

C-33

B. Tech. EXAMINATION, Dec. 2018

(Third Semester)

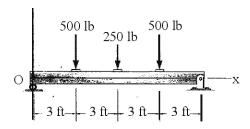
(B. Scheme) (Main & Re-appear)

(ME, AE, AER)

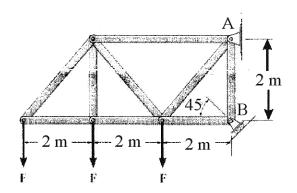
ME205B

ENGINEERING MECHANICS

Time: 3 Hours [Maximum Marks: 75

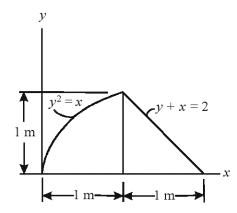

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Section. All questions carry equal marks.

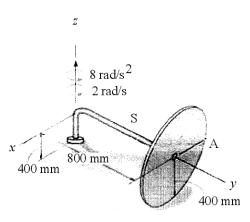

(3-17/21)M-C-33 P.T.O.

Section I

- 1. (a) Define moment of a force about an axis.How is it different from moment of a couple?5
 - (b) Replace the loading system by an equivalent resultant force and specify where the resultant's line of action intersects the member measured from A.



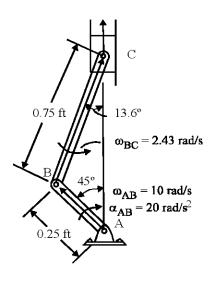
2. If the roller at B can sustain a maximum load of 3 kN, determine the largest magnitude of each of the three forces F that can be supported by the truss.



Section II

3. Locate the centroid $(\overline{x}, \overline{y})$ of the area as shown below:

(3-17/22)M-C-33 P.T.O.


8. Block A and B shown in figure below have mass 3 kg and 5 kg respectively. If the system is released from rest, determine the velocity of block B in 6s. Neglect the mass of pulley and cord.

15

M-C-33 6 770

6. The crankshaft AB turns with a clockwise angular acceleration of 20 rad/s². Determine the acceleration of the piston at the instant AB is in shown position. At this instant $\omega_{AB} = 10 \text{ rad/s}$ and $\omega_{BC} = 2.43 \text{ rad/s}$.

Section IV

7. The disk is free to rotate on the shaft S. If the shaft is turning bout Z axis at $\omega_Z = 2$ rad/s while increasing at 8 rad/s², determine the velocity and acceleration of point A at the instant shown.

P.T.O.

(3-17/23)M-C-33 5