No. of Printed Pages: 03	Roll No
--------------------------	---------

CC-684

M.C.A. EXAMINATION, May 2018

(Third Semester)

(B. Scheme) (Re-appear Only)

(M.C.A.)

MCA507

ALGORITHM ANALYSIS AND DESIGN

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-28/7) M-CC-684

P.T.O.

Unit I

- Explain space complexity and time complexity with example. 10
 - (b) Explain O-notation in asymptotic notation.

5

Explain Binarys earch algorithms. Explain its complexity and benefits. 15

Unit II

3. Explain Job sequencing with dead line in greedy method. Using greedy algorithm find an optimal schedule for following jobs with n = 7 profits:

 $(P_1, P_2, P_3, P_4, P_5, P_6, P_7) = (3, 5, 18, 20, 6,$ 1, 38) and deadline $(d_1, d_2, d_3, d_4, d_5, d_6, d_7)$ =(1, 3, 3, 4, 1, 2, 1). 15

4. Explain optimal binary search trees in dynamic programming. Taking any suitable example.

2

15

Unit III

Write an algorithms to solve the **5.** (a) Knapsack problem with Branch and Bound. 10

- Differentiate between Dynamic Knapsack and Branch and Bound Knapsack problem. 5
- **6.** Explain 8 queen's problem using back tracking. 15

Unit IV

- Explain the classes of P and NP. 10 7. Explain the cooks theorem. 5
- Explain NP scheduling problem with some specified NP hard problem. 15

M-CC-684

(3-28/8) M-CC-684

3

100