(i) $\frac{u^{\prime}(a)}{u(a)} \geq \frac{\mathrm{V}^{\prime}(a)}{\mathrm{V}(a)}, u(a) \neq 0, \mathrm{~V}(a) \neq 0$
(ii) $u(a)=0, \mathrm{~V}(a)=0$.

Then show that $\mathrm{V}(t)$ has at least as many zeros in $[a, b]$ as $u(t)$.

10
(b) Solve the Ricati's equation :

$$
x^{2} y^{\prime}+2-2 x y+x^{2} y^{2}=0
$$

Unit III

5. (a) Find non-trivial solutions of the SLBVP $\frac{d^{2} y}{d t^{2}}+\lambda u=0$, where $u(0)=0, u(\pi)=0$.

10
(b) Find the eigen values and eigen function of the SLBVP $\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0$, $y^{\prime}(1)=0, y^{\prime}\left(e^{2 \pi}\right)=0$. Where we assume that the parameter λ is non-negative. 10
\qquad

AA314

M.Sc. EXAMINATION, May 2019

(First Semester)
(B. Scheme) (Re-appear)

MATHEMATICS
MAT507B
Ordinary Differential Equations-I

Time : 3 Hours]
[Maximum Marks : 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Define equicontinuous family of functions. State and prove Ascoli theorem.

10
(b) Solve the I.V.P. $\frac{d y}{d x}=2 y-2 x^{2}-3$, $y(0)=2$ by using Picard method up to third approximation.

10
2. (a) If $f \in \mathrm{C}\left(\mathrm{C}_{1} \mathrm{~L}_{i} \mathrm{p}_{\text {in }} \mathrm{D}\right)$. Let φ_{1} and φ_{2} be ϵ_{1} and ϵ_{2} approximation solution of the equation $\frac{d y}{d x}=f(x, y)$ in D some interval (a, b). If $\in=\epsilon_{1}+\epsilon_{2}$, then for all $t \in$ (a, b) show that :
$\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \delta e^{\mathrm{K}\left(t-t_{0}\right)}+$

$$
\frac{\in}{\mathrm{K}}\left(e^{\mathrm{K}\left(t-t_{0}\right)}-1\right)
$$

where K is Lip constant and δ is given as : $\left|\varphi_{1}\left(t_{0}\right)-\varphi_{2}\left(t_{0}\right)\right| \leq \delta, t_{0} \in(a, b)$. 15
(b) Write a short note on continuation of solutions.

Unit II

3. (a) Define total differential equation. State and prove the necessary and sufficient conditions for the integrability of $\mathrm{P} d x+\mathrm{Q} d y+\mathrm{R} d z=0$.
(b) Let $u_{1}(t)$ and $u_{2}(t)$ be non-trivial L.D. solution of the Homo L.D.E. on $[a, b]$ and $p(t)>0$, then the zeros of $u_{1}(t)$ and $u_{2}(t)$ are identifically same.
4. (a) Consider Homogeneous diff. equations : $\frac{d}{d t}\left(d(t) \frac{d y}{d t}\right)+q_{1}(t) u=0$,
where $p(t)>0$ and $\frac{d}{d t}\left(p(t) \frac{d \mathrm{~V}}{d t}\right)+q_{2}(t) \mathrm{V}=0$, $q_{1}(t)>q_{1}(t)$ on $[a, b]$
if :
P.T.O.
5. (a) Factories the operator on the L.H.S. of $(x+2) \mathrm{D}^{2} y-(2 x+5) \mathrm{D} y+2 y=(x+1) e^{x}$ and hence solve it where $\mathrm{D}=\frac{d}{d x} . \quad 10$
(b) Reduce the equation :
$\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-\mathrm{D} y\right)=-3 e^{x^{2}} \sin 2 x$ to normal form and hence solve it. 10
6. (a) Find the solution of Laplace equation in (two Dim). by using separation of variable method w.r.t. boundry condition.

10
(b) Define SLBVP problem and show that the eigen values of SLBV problem are always real.

Unit IV

7. (a) Solve the linear diff. equation :

$$
x^{2} \frac{d^{2} y}{d x^{2}}-\left(x^{2}+2 x\right) \frac{d y}{d x}+(x+2) y=x^{3} e^{x}
$$

(b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+n^{2} y=\sec n x$ by using method of variation parameters.

