\qquad
6. (a) State and prove orthogonality theorem of characteristics function.
(b) Prove that the eigen values of SLVB problem are real. 3
7. (a) Find non-trival solution of the SLBVP $\frac{d^{2} u}{d t^{2}}+\lambda u=0$, where $u(0)=0$, $u(\pi)=0$.
(b) Write a note on piriodic solution of linear and non-linear equation.

Unit IV

8. Construct Green's function for the homogeneous boundary value problem $\frac{d^{4} y}{d x^{4}}=0, y(0)=y^{\prime}(0)=y^{\prime}(1)=y^{\prime}(1)=0.15$

18AA1904

M. Sc. EXAMINATION, May 2019

(First Semester)
(C Scheme) (Re-appear)
MATHEMATICS
MAT507C
Ordinary Differential Equations-I

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.
(1-06/52) M-18AA1904
P.T.O.

(Compulsory Question)

1. (a) Define Lipschitz condition and show that the function $f(t, y)=\sqrt{y}$ satisfies lip. condition on any rectangle R of the form $\mathrm{R}:|t| \leq a, b \leq y \leq c,(a, b, c>0) .3$
(b) Let $u(t)$ be a non-zero solution of the ODE $\frac{d}{d t}\left\{p(t) \frac{d y}{d t}\right\}+q(t) u=0, \quad \forall t \in \mathrm{I}$. Prove that zeros of $u(t)$ can't have a clusture point in I.
2.

(c) Write short note on Fixed Point Theorem. 4
(d) Define Green's function and its properties.

Unit I

2. (a) State and prove e-approximation theorem.
(b) Define equicontinuous family of function. State and prove Ascali Theorem.7
3. (a) State and prove Uniqueness Theorem of IVP.
(b) Define continuation of solution of IVP. Prove that solution of a given IVP can be extended up to maximum internal of existence.

Unit II

4. (a) Check that whether or not the differential equation :
$\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$
in integrable. If yes, solve it.
7
(b) State and prove Sturm Fundamental Comparison Theorem.
5. (a) State and prove Wintror-Uniqueness Theorem.8
(b) Solve the Riccati's equation :

$$
x^{2} y_{1}+2-2 x y+x^{2} y^{2}=0
$$

9. Reduce the following boundary value problem into an integral equation :

$$
\frac{d^{2} y}{d x^{2}}+x y=1, y(0)=0, y(l)=1 .
$$

9. Reduce the following boundary value problem into an integral equation :

$$
\frac{d^{2} y}{d x^{2}}+x y=1, y(0)=0, y(l)=1 .
$$

