Unit III

5. (a) Discuss stable and unstable equilibrium. Setup the Lagrangian function for a free vibration with one degree of freedom and hence obtained the equation of motion.
(b) State and prove Principle of Least action.
6. (a) Derive the Euler's equation of motion of a rigid body and modify these equation for free motion.

8
(b) Explain Legendre transformation and obtain Hamiltonian Equations. 6
(c) Discuss Torque free motion of rigid body having symmetrical top.

Unit IV

7. (a) What is the condition for a transformations to be canonical, discuss the its advantages and obtained the equations for the transformation between the variables (q, p) and (Q, P) with $\mathrm{F}_{1}(p, \mathrm{P}, t)$ and $\mathrm{F}_{2}(p, \mathrm{Q}, t)$.

14
M-AA282
\qquad

AA282
 M.Sc. EXAMINATION, May 2019

(First Semester)
(B. Scheme) (Re-appear)

PHYSICS
PHY503B
Classical Mechanics

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.
(3-41/4) M-AA282
P.T.O.

Unit I

1. (a) Define closed system, state and explain energy theorem for ' n ' particle system. $\mathbf{8}$
(b) Define dissipative function and obtained the Lagrangian equation for dissipative system.
(c) What are Constraints? Explain the forces of constraints wih a specific example. How is it related with degree of freedom?
2. (a) Derive Lagrangian Equation using variational principle, extends it for NonHolonomics system.

10
(b) Obtained the Lagrangian for a disc of mass ' m ' and radius ' r ' rolling down an inclined plane without slipping;' find its equation of motion and force of constraints.

Unit II

3. (a) Define Euler's angles and obtain an expression for the complete transformation. Express angular velocity of a rotating body in term of Euler's angles.
(b) Define inertia tensor and obtained its expression for a rigid body. 8
4. (a) Derive an expression for equation of motion under central forces and prove Kepler's third law. 8
(b) Derive the equation of conic for orbits associated with a rotating body and classify their types. 8
(c) Derive the expression for Coriolis acceleration discuss Coriolis force. 4
P.T.O.
(b) Show that the transformation $\mathrm{P}=1 / 2\left(p^{2}-q^{2}\right)$ and $\mathrm{Q}=\tan ^{-1}(q / p)$ are canonical.

6
8. (a) Discuss invariance of Poisson's Bracket under canonical transformation and show that $\left[z, \mathrm{~L}_{z}\right]=0$ and $\left[z, \mathrm{~L}_{y}\right]=x . \quad \mathbf{8}$
(b) Write a note on Jacobi identify. 4
(c) Define Hamilton Jocobi Principle and drive and equation of motion of harmonic oscillator.

8
(b) Show that the transformation $\mathrm{P}=1 / 2\left(p^{2}-q^{2}\right)$ and $\mathrm{Q}=\tan ^{-1}(q / p)$ are canonical. 6
8. (a) Discuss invariance of Poisson's Bracket under canonical transformation and show that $\left[z, \mathrm{~L}_{z}\right]=0$ and $\left[z, \mathrm{~L}_{y}\right]=x . \quad \mathbf{8}$
(b) Write a note on Jacobi identify. 4
(c) Define Hamilton Jocobi Principle and drive and equation of motion of harmonic oscillator. 8

