4. (a) Using generating function approach establish the expression for Legendre polynomial.

10
(b) Prove that:
(i) $\quad x \mathrm{~L}_{n}^{\prime}(x)=n \mathrm{~L}_{n}(x)-n \mathrm{~L}_{n-1}(x)$
(ii) $\mathrm{H}_{n}^{\prime}(x)=2 n \mathrm{H}_{n-1}(x)$.

Unit III

5. (a) State and prove Cauchy integral formula.
(b) Determine the analytic function whose real part is :

$$
x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1
$$

6. (a) Determine the poles and residue at its poles of the function :

$$
f(z)=\frac{z e^{i z}}{z^{4}+a^{4}}
$$

(b) Using method of contour integration evaluate.

$$
\mathrm{I}=\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}
$$

AA-281

M. Sc. EXAMINATION, Dec. 2017
(First Semester)
(Main \& Re-appear)
PHYSICS
PHY-501-B
Mathematical Physics

Time : 3 Hours]
[Maximum Marks : 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Explain eigen values and eigen vector of a matrix. Find the eigen values and a set of mutually othogonal eigen vectors of :

10

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(b) Show that velocity and acceleration are contravarient vectors and gradient of a scalar are component of covariant vectors.

5
(c) If $a_{\alpha \beta} x^{\alpha} x^{\beta}=0$ then show that: 5

$$
a_{i j}+a_{j i}=0
$$

2. (a) Prove that eigen values of a skew Hermition matrix are either zero or purely imaginary.
(b) Prove that sum of eigen values is equal to the trace of corresponding matrix.

6
(c) Define matric tensor. Find the component of metric tensor in cylinderical coordinate system.

Unit II

3. (a) Drive the relation :

$$
\mathrm{J}_{n}(x)=(-2)^{n} x^{n}\left\{\frac{d^{n}}{d\left(x^{2}\right)^{n}}\right\} \mathrm{J}_{o} x
$$

(b) Prove that

$$
\int_{0}^{\pi / 2} \mathrm{~J}_{1}(x \cos \theta) d \theta=\frac{1-\cos x}{x}
$$

(c) Solve the equation by Frobenius method :12

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0
$$

(c) Find:

$$
\begin{array}{r}
\mathrm{L}\left[\frac{\sin 6 t}{t}\right] \\
\mathrm{L}\left[t^{3} \sin t e^{-2 t}\right]
\end{array}
$$

