Unit III

- 5. (a) Evaluate the integral using Cauchy integral theorem $\oint_C \frac{dz}{z}$, where C is a simple closed curve.
 - (b) Define an analytic function in a complexDomain D. State and prove necessaryand sufficient conditions for a functionto be analytic.
- **6.** (a) Using the method of contour integration evaluate:

$$I = \int_{0}^{2\pi} \frac{d\theta}{\left(5 + 4\cos\theta\right)}$$

(b) Use calculus of residue to evaluate: 8

$$\int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + 9\right)}$$

No. of Printed Pages: 06

Roll No.

AA-281

M. Sc. EXAMINATION, May 2017

(First Semester)

(Re-appear Only)

PHY-501-B

PHYSICS

Mathematical Physics

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-05/6) M-AA-281

P.T.O.

M-AA-281

Unit I

- 1. (a) Determine the eigen values and corresponding eigen vectors of matrix:
 - $\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$
 - (b) Explain and prove Quotient law of tensors. Under what conditions it is inapplicable.10
- 2. (a) For a Hermitian matrix, prove that its eigen values are real and its eigen vectors are orthogonal.
 - (b) If a contravariant tensor of rank two is skew-symmetric in one coordinate system, show that it is skewsymmetric in any coordinate system.5

2

(c) Explain the following:

5

- (i) Metric Tensors
- (ii) Contraction theorem for tensors.

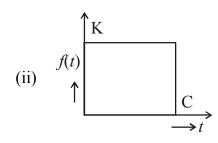
Unit II

3. (a) Solve the following differential equation using Frobenius method: 15

$$(x^{2} - x)\frac{d^{2}y}{dx^{2}} - (1 + 3x)\frac{dy}{dx} - y = 0$$

(b) Prove that : 5 $P_n(1) = 1, P_n(-x) = (-1)^n P_n(x),$ $P_n(-1) = (-1)^n \text{ and}$ $P_{2n+1}(0) = 0.$

- **4.** (a) Establish Rodrigue formula for Legendre polynomials. **10**
 - (b) Obtain an expression for Hermite polynomial of order *n* using generating function approach.6
 - (c) Prove that:


$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot \sin x.$$

(3-05/7) M-AA-281

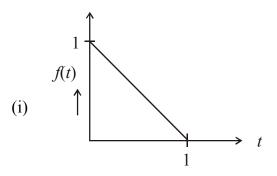
3

P.T.O.

M-AA-281

- (iii) $f(t) = t^2 \sin^3 6t$.
- (b) Find Fourier transform of δ function. 4
- (c) Find Fourier sine transform of function $e^{-|t|}$ and hence evaluate : 6

$$\int_{0}^{\infty} \frac{t.\sin mt}{\left(t^2 + 1\right)} dt$$


(c) Prove that the function given by $u = x^2 - y^2 - 2xy - 2x + 3y + 6$ is harmonic.

Unit IV

7. (a) Find inverse Laplace transform of the following function by convolution theorem:

$$F(s) = \frac{s}{\left(s^2 + a^2\right)\left(s + b\right)}$$

- (b) Find the even series expansion of f(x) = r x in the interval $0 < x < \pi$.
- 8. (a) Find Laplace Transform of the following function:

(3-05/8) M-AA-281 5 P.T.O.