(b) Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ into the points $w_{1}=1, w_{2}=i, w_{3}=-1$, respectively.

Unit IV

7. (a) What is the difference between Taylor's series and Laurent's series. Expand the function $f(z)=\frac{z^{2}-1}{(z+2)(z+3)} \quad$ using Taylor's and Laurent's series in the region :
(i) $|z|<2$
(ii) $2<|z|<3$
(iii) $|z|>3$
(b) Discuss the following :
(i) Removable singularity
(ii) Essential singularity
(iii) Limit point of poles is a nonisolated essential singularity
\qquad

BB-315

M. Sc. EXAMINATION, May 2017

(Second Semester)
(Main \& Re-appear)
(MATH)
MAT-510-B
COMPLEX ANALYSIS

Time : 3 Hours]
[Maximum Marks : 100
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) State necessary and sufficient conditions for a function $f(z)$ to be analytical.
Obtain necessary condition for a function to be analytical.

10
(b) Show that function $f(z)=e^{-z^{-4}}(z \neq 0)$ and $f(0)=0$ is not analytical at $z=0$ although CR equations are satisfied at that point.

10
2. (a) Find the radii of convergence of the following power series :
(i) $\sum \frac{2^{-n} z^{n}}{1+i n^{2}}$
(ii) $\sum_{n=0}^{\infty} \frac{n^{2}\left(z^{2}+1\right)^{n}}{(1+i)^{n}}$

Also find the domain of convergence. 10
(b) State and prove Cauchy Hadmard theorem.

10

Unit II

3. State and prove Cauchy theorem and CauchyGoursat theorem. State basic difference between these two theorems.
4. (a) State and prove Liouville's theorem. 10
(b) State Argument principle, Maximum modulus principle and Rouche's theorem. Using Rouche's theorem prove that all the roots of $z^{7}-5 z^{3}+12=0$ lies between the circle $|z|=1$ and $|z|=2.10$

Unit III

5. Obtain necessary and sufficient conditions for a function $f(z)$ to be conformal mapping. 20
6. (a) Define Mobius transformation, critical point and under what condition a Mobius transformation is normal. Find the fixed point and normal form of the bilinear transformation :

$$
w=f(z)=\frac{3 z-4}{z-1} .
$$

(2-10) M-BB-315
3
P.T.O.
(iv) State Riemann and Weierstrass theorem
(v) Identity theorem.
8. (a) State and prove Cauchy's residue theorem and using it evaluate :

10

$$
\int_{\mathrm{C}} \frac{e^{2 z}}{(z-1)(z-2)} d z, \mathrm{C}:|z|=1.5
$$

(b) State and prove Rouche's theorem and using it prove fundamental theorem on algebra.

10
(iv) State Riemann and Weierstrass theorem
(v) Identity theorem.
8. (a) State and prove Cauchy's residue theorem and using it evaluate :

$$
\int_{\mathrm{C}} \frac{e^{2 z}}{(z-1)(z-2)} d z, \mathrm{C}:|z|=1.5
$$

(b) State and prove Rouche's theorem and using it prove fundamental theorem on algebra.10

