- (b) If the mapping W = f(z) is conformal, then show that f(z) is an analytic function.
- 8. (a) Discuss the branches and branch points of the function $\log z$.
 - (b) Find the general homographic transformation which leaves the unit circle invarient.

Unit V

9. (i) Find the conjugate harmonic of :

$$x^3 - 3xy^2 - 5y$$
.

- (ii) Find the residue of $\frac{z^3}{z^2-1}$ at $z=\infty$.
- (iii) What are mesomorphic functions ? Illustrate with example.
- (iv) State Laurent's theorem.
- (v) State and prove Cauchy's inequality.

No. of Printed Pages: 4 Roll No.

18BB1905

M. Sc. EXAMINATION, May 2019

(Second Semester)

(C. Scheme) (Main Only)

MATHEMATICS

MAT510C

Complex Analysis

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks.

(4-10/9) M-18BB1905

P.T.O.

M-18BB1905 4 100

Unit I

- **1.** (a) State and prove sufficient condition for a function to be analytic.
 - (b) Prove that the function $u = e^x \cos y$ is harmonic. Find the harmonic conjugate v and the analytic function f(z) = u + iv.
- 2. (a) Examine the behaviour of the power series $\sum_{n=1}^{\infty} \frac{z^{4n}}{4n+1}$ on the circle of convergence.
 - (b) State and prove Taylor's theorem.

Unit II

(a) If a function f(z) is analytic within and on a simple closed cantour C and 'a' is any point inside C. Then prove that:

$$f'(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^2} dz$$

(b) State and prove Morera's theorem.

2

M-18BB1905

- **4.** (a) Show that every polynomial of degree *n* has exactly *n* zeros.
 - (b) State and prove minimum modulus theorem.

Unit III

- **5.** (a) State and prove Cassorati-Weierstrass theorem.
 - (b) Find the residues for $f(z) = \frac{\cot \pi z}{(z-a)^2}$ at its poles.
- **6.** (a) Prove that :

$$\int_0^{\pi} \frac{\cos 2\theta}{1 + a^2 - 2a\cos\theta} = \frac{\pi a^2}{1 - a^2} (a^2 < 1)$$

(b) State and prove Mitlag Leffler's expansion theorem.

Unit IV

7. (a) Show that the transformation $w = \frac{1}{z}$ transforms circles into circles and lines into lines.

(4-10/10) M-18BB1905

3

P.T.O.