(b) If the mapping $\mathrm{W}=f(z)$ is conformal, then show that $f(z)$ is an analytic function.
8. (a) Discuss the branches and branch points of the function $\log z$.
(b) Find the general homographic transformation which leaves the unit circle invarient

Unit V

9. (i) Find the conjugate harmonic of :

$$
x^{3}-3 x y^{2}-5 y
$$

(ii) Find the residue of $\frac{z^{3}}{z^{2}-1}$ at $z=\infty$.
(iii) What are mesomorphic functions ? Illustrate with example.
(iv) State Laurent's theorem.
(v) State and prove Cauchy's inequality.

No. of Printed Pages : 4
Roll No. \qquad

18BB1905
M. Sc. EXAMINATION, May 2019
(Second Semester)
(C. Scheme) (Main Only)

MATHEMATICS
MAT510C
Complex Analysis

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks.
(4-10/9) M-18B B1905
P.T.O.

Unit I

1. (a) State and prove sufficient condition for a function to be analytic.
(b) Prove that the function $u=e^{x} \cos y$ is harmonic. Find the harmonic conjugate v and the analytic function $f(z)=u+i v$.
2. (a) Examine the behaviour of the power series $\sum_{n=1}^{\infty} \frac{z^{4 n}}{4 n+1}$ on the circle of convergence.
(b) State and prove Taylor's theorem.

Unit II

3. (a) If a function $f(z)$ is analytic within and on a simple closed cantour C and ' a ' is any point inside C. Then prove that :

$$
f^{\prime}(a)=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{f(z)}{(z-a)^{2}} d z
$$

(b) State and prove Morera's theorem.
4. (a) Show that every polynomial of degree n has exactly n zeros.
(b) State and prove minimum modulus theorem.

Unit III

5. (a) State and prove Cassorati-Weierstrass theorem.
(b) Find the residues for $f(z)=\frac{\cot \pi z}{(z-a)^{2}}$ at its poles.
6. (a) Prove that:

$$
\int_{0}^{\pi} \frac{\cos 2 \theta}{1+a^{2}-2 a \cos \theta}=\frac{\pi a^{2}}{1-a^{2}}\left(a^{2}<1\right)
$$

(b) State and prove Mitlag Leffler's expansion theorem.

Unit IV

7. (a) Show that the transformation $w=\frac{1}{z}$ transforms circles into circles and lines into lines.
P.T.O.
