(b) State and solve Koingsberg seven bridge problem.
7. (a) State and prove Euler's formula for connected planar graph.
$71 / 2$
(b) Verify whether the graph with adjacency matrix given below is connected: 71/2

$$
\begin{gathered}
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
\text { Unit IV }
\end{gathered}
$$

8. (a) A directed graph has the following adjacency matrix. Check whether it is strongly connected : $\quad 71 / 2$

$$
\mathrm{A}(\mathrm{G})=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(b) Define isomorphism of trees. Are the following trees isomorphic? $\quad 71 / 2$
\qquad

BB-344

Dual Degree B. Sc. (Hons.)
 EXAMINATION, May 2018

(Second Semester)
(Main \& Re-appear)
MATHEMATICS
MAT2 18H
Discrete Mathematics-II

Time : 3 Hours] [Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Q. No. 1 is compulsory. Attempt any Four questions one question from each Unit.
(3-50/20)M-BB-344
P.T.O.

1. (a) Let $a, b, c \in \mathrm{~L}$ where (L, \leq) is a distributive lattice. Then prove that : $a \vee b=a \vee c$ and $a \wedge b=a \wedge c$ implies $b=c$.
(b) Find the atoms of the Boolean algebra:
(i) B^{2}
(ii) B^{4}
(iii) B^{n} for $n \geq 1$.
(c) In a graph G, the number of odd vertices is an even number.
(d) If G is a tree on n vertices, then G has $(n-1)$ edges. 15

Unit I

2. (a) Define a lattice and give one example. Prove the associated law and absorption law of lattices.$71 / 2$
(b) Define complemented distributive lattice and prove that de Morgan's laws hold good in it.
$71 / 2$

M-BB-344
3. (a) Prove that direct product of any two distributive lattices is a distributive lattice.
(b) Is the Cartesian product of two lattices always a lattice ? Prove your claim. 71/2

Unit II

4. (a) Define Boolean algebra and prove associative laws of it. 71/2
(b) Let a be any element of a Boolean algebra then prove that:
(i) Complement of ' a ' is unique
(ii) $\left(a^{\prime}\right)^{\prime}=a$
(iii) $\mathrm{O}^{\prime}=\mathrm{I}$ and $\mathrm{I}^{\prime}=\mathrm{O}$. $71 / 2$
5. (a) Reduce the following Boolean function : $\mathrm{F}=\Sigma m(0,1,2,3,8,9,13,15 \quad 71 / 2$
(b) Explain briefly switching circuits. 7½

Unit III

6. (a) If G is a connected graph and every vertex of G has even degree, then G has an Euler circuit.$71 / 2$
(3-50/21)M-BB-344 3
P.T.O.
(i)

(i)

(ii)

(ii)

7. (a) A graph G has a spanning tree iff G is connected.
$71 / 2$
(b) Explain tree searching with an example.
