0.9857

1.78

0.9781

0.9691

0.9584

(b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using :

- (i) Trapezoidal rule
- (ii) Simpson's $\frac{1}{3}$ rule
- (iii) Simpson's $\frac{3}{8}$ rule.
- 6. (a) Derive the expression for Newton's Cotes quadrature formula for $\int_{a}^{b} f(x) dx$.
 - (b) Use Romberg's method to compute $\int_{0}^{1} \frac{dx}{1+x^{2}}$ correct to four decimal places.

No. of Printed Pages: 05

Roll No.

BB-311

M. Sc. EXAMINATION, May 2018

(Second Semester)

(Main & Re-appear)

MAT502B

MATHEMATICS

Numerical Analysis

Time: 3 Hours]

[Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

M-BB-311

4

(3-18/18)M-BB-311

P.T.O.

Unit I

- **1.** (a) Explain the following terms with examples:
 - (i) Round-off error
 - (ii) Truncation error
 - (iii) Absolute and relative error.
 - (b) Use the fixed point method to evaluate a root of the equation $x^2 x 1 = 0$.
- 2. Show that Newton-Raphson's method has a quadratic convergence and hence find the real root of the equation $x^2 + 4 \sin x = 0$ near x = -1.9 correct to three decimal places. Also discuss the cases of failure of the method.

Unit II

3. (a) Express $u = x^4 - 12x^3 + 24x^2 - 30x + 9$ and its successive differences in factorial notation. Hence show that:

$$\Delta^5 u = 0$$

M-BB-311 2

(b) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks	No. of Students
30-40	31
40-50	42
50-60	51
60-70	35
70-80	31

4. What do you understand by spline interpolation? Explain in detail. For the following values of x and y, find the cubic spline and estimate y(1.5):

x : 1 2 3 4 *y* : 1 5 11 8

Unit III

5. (a) Find the value of cos (1.74) from the following table :

$\boldsymbol{\mathcal{X}}$	$\sin x$
1.7	0.9916

(3-18/19)M-BB-311 3

P.T.O.

Unit IV

- 7. What do you understand by Predictor Corrector methods? Derive expression for Milne's Predictor-corrector method and hence solve $\frac{dy}{dx} = \frac{x+y}{2} \text{ assuming } y(0) = 2, \ y(0.5) = 2.636,$ $y(1.0) = 3.595, \ y(1.5) = 4.968.$
- 8. (a) Using the shooting method, solve the boundary value problem: y''(x) = y(x), y(0) = 0 and y(1) = 1.17.
 - (b) Solve the boundary value problem : y'' + y = -x, 0 < x < 1 with y(0) = y(1) = 0 by Galerkin's method.

Unit IV

- 7. What do you understand by Predictor Corrector methods? Derive expression for Milne's Predictor-corrector method and hence solve $\frac{dy}{dx} = \frac{x+y}{2} \text{ assuming } y(0) = 2, \ y(0.5) = 2.636,$ $y(1.0) = 3.595, \ y(1.5) = 4.968.$
- 8. (a) Using the shooting method, solve the boundary value problem: y''(x) = y(x), y(0) = 0 and y(1) = 1.17.
 - Solve the boundary value problem : y'' + y = -x, 0 < x < 1 with y(0) = y(1) = 0 by Galerkin's method.