Unit I1I

6. (a) Show that the periodic solution and
closed path of the planar autonomous
system are closely related. 8
(b) Determine the nature and stability of
critical point of the system
dx 2
—=(y+1)" —cosx
7 (y+D
dy .
— =sin (x +
" (x+y) 7
7. (a) State and prove Bendixson's non-
existence theorem for existence of a limit
cycle. 7
(b) State and prove the theorem concening
the asymptotic stability of the critical
point of the non-linear system. 8
Unit 1V
8. (a) Reduce the following IVP into an integral
equation : 7
d—2y+xﬂ+ =0, 10) = 1, y(0) = 1
2 X ty=y , ¥'(0) = L.
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(b)

(c)

(d)

2. (a)

(b)

(Compulsory Question)

Write a note on the fundamental matrix
Q(?) for a periodic system. 4
Describe the following : 4
(i) Autonomous system and the phase
plane

(i1)) Trajactory of the system.

Define Liapunove function giving an
example to it. 3
Define Integral equation and discuss its

classifications. 4
Unit 1
Show that the set of all solutions of LHS

d
of nth order 7); =A()y,tC—-1 form an

n-dimensional vector space over the
complex field. 7

Define Non-homogeneous linear system

and find the expression for its solution. 8
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(b)

(b)

(b)

State and prove Liouville's formula for
the solutions of LHS. 10
If A, A, — A, are the Ch. roots of C and

Unit 11

Define critical points of an autonomous
system and discuss their classification
with suitable explanation. 10
Determine the nature and stability
of critical points of the system
a_ &y

=x—-y,—
dt Y

=x+5y. 5
Determine the nature and stability of
critical points if the roots of characteristic
equation, are real, unequal and opposite
sign. 8
Define stability and asymptotic stability
of autonomous system and prove related
theorem. 7
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(b) Solve the integral equation : 8

n/2
o) =2x-m+4 [ sin®x () dt
0

9. Determine the eigen values and eigen function

of the homogeneous integral equation

1
$(x) = 1| k(x, ) §(¢) dt where,
0

—e¢'sinhx, 0<x<t
k(x,t)=9 .15
—e “sinh ¢, t<x<l1
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