(b) Describe Isomer shift and quadrupole effect in Mossbauer spectroscopy. 10

Unit IV

- 7. Write a short note on Molecular luminiscence.Explain the terms-Fluorescence,Phosphorescence and chemiluminescence usingJablonski diagram.20
- 8. (a) Discuss Beer-Lamberts law for quantitative application. 10
 - (b) Give explanation of Frank-condon principle.10

No. of Printed Pages: 04 Roll No.

CC-291

M. Sc. EXAMINATION, Dec. 2018

(Third Semester)

(Main & Re-appear)

CHEMISTRY

CH610B

Inorganic Special-I (Spectroscopy Techniques)

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-23/11) M-CC-291 P.T.O.

Unit I

- (a) Explain the principle and instrumentation of Atomic absorption spectroscopy.
 - (b) Discuss the spectral and chemical interfaces and their removal.
- **2.** Explain the following:
 - (i) Inductively complete plasma 4
 - (ii) Applications of advantages of AES in reference to detection limit 8
 - (iii) Excitation sources used in AES. 8

Unit II

- 3. (a) Explain the principle of ESR spectroscopy. Predict the ESR spectrum of Cu^{+2} in frozen aqueous solution (Use I = 3/2).
 - (b) Discuss the significance of 'g' in EPR.What are the various factors that affect g-value.10

2

4. (a) Explain the following terms in EPR:

- (i) Zero field splitting
- (ii) Krammer's degeneracy
- (iii) Derivative representation of spectra.

4,2,4

- (b) Briefly discuss the following:
 - (i) Hyper fine coupling
 - (ii) Use of ESR in electron exchange reaction rates. 7,3

Unit III

- **5.** (a) On the basis of relative isotopic abundance of halogens, predict the Mass spectrum of CH₃CBr₂CH₂Cl and CHCl₃.
 - (b) Write a short note on FAB, CI and magnetic sector analyser used in MS.

7,13

6. (a) Explain the applications of Mossbaeur spectroscopy to study the bonding and structure of Fe⁺², Fe⁺³ : Sn⁺², Sn⁺⁴ compounds using appropriate examples.

10

(2-23/12) M-CC-291

3

P.T.O.