Unit IV

- **7.** Describe in detail linear combination of atomic orbital methods to predict :
 - (i) Symmetric and anti symmetric wave functions of molecular orbital
 - (ii) Energy of hydrogen molecules ion. 10,10
- **8.** Write short notes on the following:
 - (a) Hybridization
 - (b) Influence of spin on wave function of atoms. 10,10

No. of Printed Pages: 04

Roll No.

CC-301

M. Sc. EXAMINATION, May 2017

(Third Semester)

(Re-appear Only)

CHEMISTRY

CH-627-B

Physical Chemistry Special-II (Quantum Chemistry)

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-17) M-CC-301

P.T.O.

Unit I

- **1.** (a) Prove that $[\hat{j}_+, \hat{j}_-] = 2\hbar \hat{j}_z$. **8,12**
 - (b) Prove that the eigen values of \hat{j}_z operated on function $\Psi_{j,m}$ yields eigen value $m\hbar$.
- 2. (a) Derive expression for operator of angular momentum in Cartesian coordinates. 6
 - (b) $\left[\hat{L}_y, \hat{L}_z\right] = ih\hat{L}_z$ 7
 - (c) Prove that step down Ladder operator lowers the eigen values of \hat{J}_z by \hbar .

Unit II

- **3.** (a) What happened to the particle, if the walls of 3-D box removed?
 - (b) Explain the solution of angular equation for H-atom. **8**
 - (c) What do you know about the quantization of energy of microscopic particle? 4
 - (d) Explain the zero point energy of particle when in :
 - (i) Simple Harmonic oscillator system
 - (ii) Rigid Rotator system.

M-CC-301 2

- **4.** (a) What happened in energy levels when ?
 - (i) mass of particle increases in 3-D box
 - (ii) Length of 3-D box decreases. 6
 - (b) Calculate the average distance of 2s electron from nucleus of hydrogen atom.

6

- (c) Explain the equation of:
 - (i) Heemite polynomial
 - (ii) Lagurii polynomial. 4 each

Unit III

5. Describe variation principle. How this can be utilized to find the energy of Helium atom?

20

6. State and explain first order perturbation theory.

Utilize it to an electron in a one-dimensional box under the influence of electric field. 20

(2-17) M-CC-301

3

P.T.O.