Unit IV

7. (a) If $r \geq 3$, then show that:

$$
\mathrm{U}_{2^{r}}=\left\{ \pm 3^{i}: 0 \leq i \leq 2^{r-2}\right\}
$$

(b) Prove that the group U_{n} is cyclic for every $n=1,2,4, p^{r}$ or $2 p^{r}$, where p is a prime and r is a positive integer.
8. (a) Let x be any primitive roots modulo p^{2}, then prove that x is a primitve root modulo p^{e} for all $e \geq 2$.
(b) Show that the cubic polynomial $x^{3}-1$ has nine roots in \mathbf{Z}_{63}.
\qquad

CC-314

M.Sc. EXAMINATION, May 2017
(Third Semester)
(Re-appear Only)
(MATH)
MAT-609-B
Analytical Number Theory-I

Time : 3 Hours] [Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Suppose that $\operatorname{gcd}(a, m)=1$, then prove that $a^{\phi(m)} \equiv 1(\bmod m)$. Deduce that $\frac{1}{5} n^{5}+\frac{1}{3} n^{3}+\frac{7}{15} n$ is an integer for every integer n.
(b) Prove that if n is composite, then $2^{n}-1$ is also composite. Is the converse true ?
2. (a) Show that there are infinitely many primes of the form $4 k+1$.
(b) State and prove Wilson's theorem.

Unit II

3. (a) Find all integers that give remainder 1, 2 , 3 when divided by $3,4,5$ respectivley.
(b) State Hurwitz theorem and prove that the constant in Hurwitz is the least possible.
M-CC-314
4. (a) If $\operatorname{gcd}(a, m)=1$, then prove that $a x \equiv$ $b(\bmod m)$ has exactly one solution. Using this solve linear Diophantine equation $9 x+16 y=35$.
(b) Prove that π is irrational.

Unit III

5. (a) Prove that every prime of the form $4 n+1$ can be written as a sum of two squares.
(b) Let p be an odd prime and $\operatorname{gcd}(a, p)=$ 1. Then prove that a is a quadratic residue or non-residue of p accordingly as : $a^{(p-1) / 2} \equiv 1(\bmod p), a^{(p-1) / 2} \equiv-1(\bmod p)$ Find all quadratic resiude and non-residue for $p=13$.
6. (a) Prove that $G(2)=4$.
(b) Define Jacobi Symbol. Suppose that P and Q is odd and $\mathrm{P}, \mathrm{Q}>0$, then prove that :

$$
\left(\frac{\mathrm{P}}{\mathrm{Q}}\right)\left(\frac{\mathrm{Q}}{\mathrm{P}}\right)=(-1)^{(\mathrm{P}-1)(\mathrm{Q}-1) / 4}
$$

P.T.O.

