4. (a) Prove that the necessary and sufficient condition for the existence of an instantaneous code with word length (n_1, n_2, \dots, n_N) is a set of positive integer

$$[n_1, n_2, \dots, n_N]$$
 exists iff $\sum_{i=1}^N D^{-n_i} \le 1$.

where D = size of code alphabet. 15

(b) Define properties of optical coding. 5

Unit III

- State and prove that fundamentals theorem for desired code.
 20
- 6. (a) State and prove Fano's Inequality. 10
 - (b) Define decoding schemes and Ideal observer with example. 10

Unit IV

- 7. (a) Write a short note on the applications of information theory. 10
 - (b) Prove maximality property of entropy functions. 10

4

M-CC-319

CC-319

M. Sc. EXAMINATION, May 2018

(Third Semester)

(Re-appear Only)

MATHEMATICS

MAT619B

Information Theory

Time : 3 *Hours*]

[Maximum Marks : 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt *Five* questions in all, selecting *one* question from each Unit. All questions carry equal marks.

(3-25/22)M-CC-319

Unit I

- Define models for a communication **1.** (a) 10 system.
 - The joint probabilities for a transmitter (b) as $(x_1, x_2, x_3, x_4, x_5)$ and a receiver alphabet (y_1, y_2, y_3, y_4) are given below :

	\mathcal{Y}_1	\mathcal{Y}_2	<i>Y</i> ₃	\mathcal{Y}_4
x_1	0.15	0	.10	0]
x_2	0.10	0.20	0	0.10
<i>x</i> ₃	0	0.05	0.05	0.05
x_4	0	0	0.05	0.05
<i>x</i> ₅	0	0.05	0.05	0

Determine the marginal, conditional and joint entropies for this channel. 10

Define marginal joint and conditional entropy 2. functions and establish relations among them.

2

20

M-CC-319

Construct a	Huffman	code fo	or the	below
symbols :				10

3. (a)

Unit II

Symbol	Pro.	
<i>x</i> ₁	0.20	
<i>x</i> ₂	0.17	
<i>x</i> ₃	0.16	
x_4	0.15	
x_5	0.10	
<i>x</i> ₆	0.09	
x_7	0.07	
x_8	—	

Also determine the average code word length.

(b) If \overline{n} (Average code word length) of a decipherable uniquely code for the random variables X then prove

that
$$\overline{n} \ge \frac{H(X)}{\log D}$$
 with equality iff

$$p_i = D^{-n_i} \quad \forall \ i = 1, 2, \dots, m.$$
 10

(3-25/23)M-CC-319 **P.T.O.** 3

- 8. (a) State and prove branching property of entropy function with example. 10
 - (b) Define Axiomatic characterization of Shannon entropy due to Shannon and Fadeev. 10

- 8. (a) State and prove branching property of entropy function with example. 10
 - (b) Define Axiomatic characterization of Shannon entropy due to Shannon and Fadeev. 10

M-CC-319

5

5

50

http://www.dcrustonline.com