4. (a) Prove that the necessary and sufficient condition for the existence of an instantaneous code with word length $\left(n_{1}, n_{2} \ldots \ldots n_{\mathrm{N}}\right)$ is a set of positive integer $\left[n_{1}, n_{2} \ldots . . n_{\mathrm{N}}\right]$ exists iff $\sum_{i=1}^{\mathrm{N}} \mathrm{D}^{-n_{i}} \leq 1$. where $\mathrm{D}=$ size of code alphabet. $\quad 15$
(b) Define properties of optical coding. 5

Unit III

5. State and prove that fundamentals theorem for desired code.
6. (a) State and prove Fano's Inequality. 10
(b) Define decoding schemes and Ideal observer with example.

10

Unit IV

7. (a) Write a short note on the applications of information theory.
(b) Prove maximality property of entropy functions.

10

CC-319

M. Sc. EXAMINATION, May 2018

(Third Semester)
(Re-appear Only)
MATHEMATICS
MAT619B
Information Theory

Time : 3 Hours $]$
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Define models for a communication system.
(b) The joint probabilities for a transmitter as $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and a receiver alphabet $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ are given below :

y_{1}
y_{2}
:---
x_{2}
x_{3}
x_{4}
x_{5}

0.10 \& 0.20 \& 0 \& 0.10

0 \& 0.05 \& 0.05 \& 0.05

0 \& 0 \& 0.05 \& 0.05

0 \& 0.05 \& 0.05 \& 0\end{array}\right]\)

Determine the marginal, conditional and joint entropies for this channel. $\mathbf{1 0}$
2. Define marginal joint and conditional entropy functions and establish relations among them.

Unit II

3. (a) Construct a Huffman code for the below symbols :

Symbol	Pro.
x_{1}	0.20
x_{2}	0.17
x_{3}	0.16
x_{4}	0.15
x_{5}	0.10
x_{6}	0.09
x_{7}	0.07
x_{8}	-

Also determine the average code word length.
(b) If \bar{n} (Average code word length) of a uniquely decipherable code for the random variables X then prove that $\quad \bar{n} \geq \frac{\mathrm{H}(\mathrm{X})}{\log \mathrm{D}} \quad$ with equality iff $p_{i}=\mathrm{D}^{-n_{i}} \quad \forall i=1,2, \ldots . m$.
P.T.O.
8. (a) State and prove branching property of entropy function with example. $\mathbf{1 0}$
(b) Define Axiomatic characterization of Shannon entropy due to Shannon and Fadeev. 10

