Unit IV

7. (a) Explain and discuss the semi-classical theory of radiative transitions in atoms and derive the expression for transition probability of induced emission. $\mathbf{1 6}$
(b) What is electric dipole approximation? 4
8. Derive Dirac relativistic equation and find its plane wave solutions.
\qquad

CC-282

M. Sc. EXAMINATION, Dec. 2018
(Third Semester)
(Main \& Re-appear)
PHYSICS
PHY603B
Quantum Mechanics-II

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(2-23/22) M-CC-282
P.T.O.

Unit I

1. (a) Using WKB approximation, explain the phenomenon of one dimension barrier penetration and find the expressions of coefficients of reflection and transmission.
(b) What are the criteria for the validity of WKB approximation?

5
2. (a) Derive and discuss Fermi-Golden rule. 15
(b) What is harmonic perturbation? 5

Unit II

3. (a) Give the explanation of Born approximation and discuss its validity for exponential potential.

16
(b) What is partial wave analysis ? 4
4. (a) Explain the scattering by a rigid sphere.
(b) What are phase shifts ? How are these related to potential ?

8

Unit III

5. (a) Explain and discuss the collisions of two identical particles.
(b) Explain the different statistics on the basis of distinguishability and indistinguishability of identical particles and find the total number of states occupied by two identical particles. 6
(c) Write the spin eigen functions and eigenvalues for $\mathrm{S}=\frac{3}{2}$ and also discuss the orthonormality conditions.
6. (a) Explain the effect of spin on the energy levels of a helium atom and discuss the resulting singlet and triplet states. 15
(b) Find commutation relation $\left[\hat{\sigma}^{2}, \hat{\sigma}_{x}\right] .3$
(c) Write the matrix forms of $\hat{\sigma}_{x}, \hat{\sigma}_{y}$ and $\hat{\sigma}_{z}$.
