6. (a) Show that the equilibrium distribution of particles following Maxwell-Boltzmann statistics is given by: 12,8

$$N_i = N \frac{gie^{-\beta \in i}}{\sum_i gie^{-\beta \in i}}, \beta = \frac{1}{kT}$$

- (b) Write in brief on the following:
 - (i) Statistics a photon gas
 - (ii) Thermonic emission.

12,8

Unit IV

- 7. (a) Derive an expression for entropy production and entropy flow in an open system.
 - (b) Give an account of entropy production in chemical reactions. 12,8
- **8.** (a) Describe stream potential and electroosmosis using Onsagars' reciprocal relations.
 - (b) Give an account of energy fluctuations in a canonical ensembles.
 - (c) Write in brief on Saxen's relation. 8,8,4

4

M-DD300

No. of Printed Pages: 04 Roll No.

DD300

M. Sc. EXAMINATION, May 2019

(Fourth Semester)

(B. Scheme) (Main & Re-appear)

CHEMISTRY

CH626B

Physical Chemistry Special-IV (Statistical Thermodynamics)

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

100 (2-28/12) M-DD300 P.T.O.

Unit I

- 1. (a) Define and differentiate between microcanonical ensemble, canonical ensemble and grand canonical ensemble.
 - (b) Give an account of Maxwell Boltzmann law of distribution of energy and evaluation average velocity.
 - (c) Derive an expression for Maxwell-Boltzmann statistics. 4,10,6
- 2. (a) Obtain an expression for heat capacity at constant volume of a system of N independent particles (atoms or molecules).
 - (b) Define partition function and give its physical significance.
 - (c) Using the concept of molecular p.f., show that for an ideal monoatomic gas, P = nRT/V. 8,4,8

Unit II

3. (a) Derive an expression for translational entropy of a monoatomic gas in the form of Seckure-Tetrode equation.

2

(b) Calculate rotational partition function for H_2 molecule at 300 K. Moment of inertia of H_2 is 4.0×10^{-45} kgm² and symmetry no. is 2.

- **4.** (a) Establish a relationship between p.f. and equilibrium constant of a chemical reaction.
 - (b) For CO gas, $Q_{vA} = 2.77$ K, and $Q_{vib} = 3.084$ K. For one mole of this gas at 25°C and 1 atm. pressure, Calculate translational and vibrational p.f. **10,10**

Unit III

- 5. (a) Derive an expression for Bose-Einstein statistics. Compare it with Fermi-Dirac statistics. State under what conditions the two become equal.
 - (b) Write short notes on the following:
 - (i) Gas degeneration
 - (ii) Specific neat of electron gas. 12,8

M-DD300

(2-28/13) M-DD300

3

P.T.O.