(b) Define norm of an element of $\mathrm{Q}(\sqrt{m})$. If α is an algebraic integer of $\mathrm{Q}(\sqrt{m})$, then prove that $\mathrm{N}(\alpha)$ is a rational integer.
(c) Prove that an algebraic integer \in of a quadratic field is a unity iff $N(\in) \pm 1$.
4. (a) Define Euclidean field. Prove that the field $\mathrm{Q}(i)$ is Euclidean.

10
(b) Obtain all the unities of the field $\mathrm{Q}(i)$.

Unit III

5. (a) Define prime in a quadratic field. Prove that primes of $\mathrm{Q}(\sqrt{2})$ are given by :
(i) $\sqrt{2}$ and its associates
(ii) The rational primes of the form $8 n \pm 3$ and their associates.
(iii) The factors $a+b \sqrt{2}$ of rational primes of the form $8 n \pm 1$

DD-314

M. Sc. EXAMINATION, May 2017

(Fourth Semester)
(Main \& Re-appear)
MAT-610-B
MATHEMATICS

ANALYTICAL NUMBER THEORY-II

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Define Riemann Zeta function and prove that if $s>1$, then

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-p^{-s}}\right)
$$

where the product is over all primes p.
(b) For each integer $s \geq 2$, let $\mathrm{P}(s)$ denote the probability that s randomly and independently chosen integers have greatest common divisor 1. Then show that :

$$
\begin{aligned}
& p(s)=\prod_{p}\left(1-p^{-s}\right) . \\
& p(z)=\frac{6}{\pi^{2}} .
\end{aligned}
$$

2. (a) Let λ be a function defined by $\lambda\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots \ldots . . p_{k}^{e_{k}}\right)=(-1)^{e_{1}+e_{2}+\ldots e_{k}}$ and $\lambda(1)=1$, where $p_{1}, p_{2}, \ldots \ldots p_{k}$ are distinct primes. Then show that :
$\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a perfect square } \\ 0 & \text { otherwise }\end{cases}$
Hence show that $\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\frac{\zeta(2 s)}{\zeta(s)} \forall s>1$.
(b) Define Euler product. If f is a multiplicative arithmetic function, and $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent, then prove that :
$\sum_{n=1}^{\infty} f(n)=\prod_{p}\left(1+f(p)+f\left(p^{2}\right)+\ldots \ldots ..\right)$,
where p ranges over all the primes. $\mathbf{1 0 , 1 0}$

Unit II

3. (a) Prove that the algebraic integers of $\mathrm{Q} \sqrt{m}$ are of the type $a+b \sqrt{m}$ and $a+b \tau$, where $\tau=\frac{\sqrt{m}-1}{2}, a, b \in \mathrm{Z}$ if $m \equiv 2$ or $3(\bmod 4)$ and $m \equiv 1(\bmod 4)$ respectively.
P.T.O.

Unit IV

7. (a) State Mobius inversion formula and using this prove that :

$$
\sum_{d \mid n} \tau(d) \mu\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d) \tau\left(\frac{n}{d}\right)=1
$$

where $n \geq 1$ also τ denotes the divisor function. Verify this equation for $n=12$ also.5
(b) Show that Mobius function μ is multiplicative. 5
(c) Prove that the average order of $\tau(n)$ is $n \log _{\mathrm{e}}{ }^{n}$.

10
8. (a) Define $\sigma(n)$ and show that:

5

$$
\begin{aligned}
& \quad \sigma(4 m-1) \equiv 0(\bmod 4) \\
& \text { and } \\
& \sigma(12 m \quad 1) \equiv 0(\bmod 12) .
\end{aligned}
$$

(b) Let G denote the set of all arithmetic functions for which $f(1) \neq 0$. Then prove that G is an Abelian group w.r.t. dirichlet product.
(b) Let π be a prime of $\mathrm{Q}(i)$ with odd norm and let $(d, \pi)=1$ in $\mathrm{Q}(i)$. Then prove that :

$$
\alpha^{\phi(\pi)} \equiv 1(\bmod \pi)
$$

10,10
6. (a) Define Fibonacci number u_{n} and Lucas number v_{n}. Prove that :
(i) $u_{m} v_{n}+u_{n} v_{m}=2 u_{m+n}$
(ii) $v_{n}^{2}-5 u_{n}^{2}=(-1)^{n} 4$
(iii) $u_{n}^{2}-u_{n-1} u_{n+1}=(-1)^{n-1}$
(iv) $v_{n}^{2}-v_{n-1} v_{n+1}=5(-1)^{n}$

Hence show that :

$$
\left(u_{n}, u_{n+1}\right)=\left(v_{n}, u_{n+1}\right)=1
$$

and $u_{n} \mid u_{r n} \forall r \geq 1$.
(b) Prove that the Euclidean Algorithm is equivalent to the following condition in $\mathrm{Q}(\sqrt{m})$. Given any δ (algebraic integer or not) of $\mathrm{Q}(\sqrt{m}), \exists$ an algebraic integer K s.t.

$$
|\mathrm{N}(s-\mathrm{K})|<1
$$

10,10
(3-22/25)M-DD-314
5
P.T.O.

