5. (a) Show that the metrix is a positive definite quadratic form in $d u, d v$ and calculate the first fundamental magnitude for the surface.

$$
r=[u \cos v, u \sin v, f(u)]
$$

(b) Show that the length of the perpendicular as far as terms of second order, on the tangent plane to a surface at the point (u, v) from a neighbouring point $(u+d u, v+d v)$ is : 10

$$
\frac{1}{2}\left(\mathrm{~L} d u^{2}+2 \mathrm{M} d u d v+N d v^{2}\right)
$$

6. (a) Show that the curve bisecting the angle between the parametric curve are given by :

$$
\mathrm{E} d u^{2}-\mathrm{G} d v^{2}=0
$$

\qquad
M. Sc. EXAMINATION, Dec. 2017
(Fourth Semester)
(Re-appear Only)
MATHEMATICS
MAT-606-B
Differential Geometry

Time : 3 Hours]
[Maximum Marks : 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Find the unit vector along the tangent to given curve and derive the formula to find the arc length.

10
(b) For the curve $x=a\left(3 t-t^{3}\right), y=3 a t^{2}$ and $z=a\left(3 t+t^{3}\right)$ show that : 10

$$
\mathrm{K}=\tau \frac{1}{3 a\left(1+t^{2}\right)^{2}}
$$

2. (a) Prove that the necessary and sufficient condition for a curve to be a helix is that its curvature and torsion are in constant ratio. 10
(b) Show that the tangent lines to the locus of center of spherical curvature of a curve are parallel to the binormal lines of the curve at the corresponding points. $\mathbf{1 0}$

M-DD-313 2

Unit II

3. (a) Define surface and parametric curves and find the equation of tangent plane and normal plane to the surface $z=x^{2}+y^{2}$ at the point $(1,-1,2)$.
(b) The normal at the point P of the ellipse :

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

meets that co-ordinate planes in $\mathrm{G}_{1}, \mathrm{G}_{2}$, G_{3}; prove that the ratio $\mathrm{PG}_{1}: \mathrm{PG}_{2}: \mathrm{PG}_{3}$ are constant.
4. (a) Prove that the envelope of a family of surfaces touches each member of the family at all points of its characteristics.
(b) Find the envelop of family of planes :

$$
3 a^{2} x-3 a y+z=a^{3}
$$

and show that its edge of regression is the curve of intersection of the surface $y^{2}=2 x, y x=z$.
P.T.O.
8. (a) Define torsion of a geodesic and show that torsion of geodesic vanishes in a principal direction.
(b) Prove that at every point of a geodesic the principle normal is normal to the surface.

10
(b) Define the following :
(i) Normal Curvature
(ii) Principal Curvature
(iii) Line of Curvature
(iv) Principal Direction
(v) Minimal Surface.

Unit IV

7. (a) Prove that the necessary and sufficient condition for a curve $u=$ constant to be geodesic on the surface is :

$$
\mathrm{GG}_{1}+\mathrm{FG}_{2}-2 \mathrm{GF}_{2}=0
$$

(b) Prove that the curves of the family $\frac{v^{2}}{u^{2}}=$ constant are geodesics on a surface with metric :10

$$
v^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2}(u>0, v>0)
$$

