(b) Show that in terms of E, F, G, L, M, N the Weingarten equation are : $\mathbf{1 0}$ $\mathrm{H}^{2} \mathrm{~N}_{1}=(\mathrm{FM}-\mathrm{GL}) r_{1}+(\mathrm{FL}-\mathrm{EM}) r_{2}$ $\mathrm{H}^{2} \mathrm{~N}_{2}=(\mathrm{FN}-\mathrm{GM}) r_{1}+(\mathrm{FM}-\mathrm{EN}) r_{2}$
6. (a) Define principal curvature and show that equation for principal curvature through a point of surface $z=f(x, y)$ is
$\mathrm{H}^{2} \mathrm{~K}_{n}^{2}+\mathrm{H}\left[\left(1+p^{2}\right) t+\left(1+q^{2}\right) r-2 s p q\right] \mathrm{K}_{n}$
$+\left(r t-s^{2}\right)=0$.
10
(b) Derive the formula for normal curvature in terms of fundamental magnitudes. 10

Unit IV

7. (a) Show that a necessary and sufficient condition for a curve $v=$ constant to be geodesic on the surface is :

$$
\mathrm{EE}_{2}+\mathrm{FE}_{1}+2 \mathrm{EF}_{1}=0
$$

(b) Show that the curve $u+v=$ constant. are geodesics on a surface with metric $\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2}$.

DD-313

M. Sc. EXAMINATION, May 2017

(Fourth Semester)
(Main \& Re-appear)
MAT-606-B
MATHEMATICS
Differential Geometry

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : The question paper consists of four Units. Each Unit contains two questions and students have to attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Find the equation of tangent line at a given point $\mathrm{P}(r)$ on the curve C and show that the tangent at any point of the curve whose equations referred to rectangular axis are $x=3 t, y=3 t^{2}, z=2 t^{3}$ makes a constant angle with the line.

10
(b) State and prove Serret-Frenet Formulas.

10
2. (a) Prove that in order that the principal normals of a curve be binormal of another, the relation $a\left(k^{2}+\tau^{2}\right)=b k$ must hold, where a and b are constant. 10
(b) Find the radius and center of sphere of curvature.

10

Unit II

3. (a) Define surface and parametric curves and also find the equation of tangent plane and normal plane to the surface $x y z=4$ at the points (1, 2, 2).

20
M-DD-313 2
(b) Show that the sum of the squares of the intercepts on the co-ordinate axes made by tangent plane to the surface : $x^{2 / 3}+y^{2 / 3}+z^{2 / 3}=a^{2 / 3}$ is constant.
4. (a) Explain the following terms:
(i) Characteristics of surface $\mathrm{F}(x, y, z, a)=0$ for parameter a.
(ii) Envelope of family of surface $\mathrm{F}(x, y, z, a)=0$
(iii) Edge of regression.
(b) Find the envelope of family of planes $3 a^{2} x-3 a y+z=a^{3}$ and show that its edge of regression is the curve of intersection of the surface $y^{2}=z x, x y=z$.

10

Unit III

5. (a) Define first fundamental form and calculate first and second fundamental magnitude for the general surface of revolution.
6. (a) Prove that at every point of a geodesic the principal normal is normal to the surface.
(b) Prove that if a geodesic is either a plane curve or a line of curvature or it is both.

10
8. (a) Prove that at every point of a geodesic the principal normal is normal to the surface.
(b) Prove that if a geodesic is either a plane curve or a line of curvature or it is both.

