Section III

5. (a) Explain second fundamental form and second order magnitudes and what is the geometrical interpretation of the second fundamental form.

10
(b) Obtain Weingarten equations and hence deduce the formula :

$$
\mathrm{HN}_{1} \times \overrightarrow{\mathrm{N}}_{2}=\left(\mathrm{LM}-\mathrm{M}^{2}\right) \overrightarrow{\mathrm{N}}
$$

6. (a) Prove that the normals to any surface at consecutive points of one of its line of curvature intersect. Conversely, if the normals at two consecutive points of curve drawn on a surface intersect the curve is a line of curvature.

10
(b) State and prove Euler's Theorem.

10

Section IV

7. (a) Show that a necessary and sufficiency condition for a curve $v=$ constant to be geodesics on the general surface is $\mathrm{EE}_{2}+\mathrm{FE}_{1}-2 \mathrm{EF}_{1}=0$ and also find the condition for the curve $u=c$ to be a geodesics.

10
M-DD-313

DD-313

M. Sc. EXAMINATION, May 2018

(Fourth Semester)
(Main \& Re-appear)
MATHEMATICS
MAT606B
Differential Geometry

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : The question paper will consists of four Sections. Each Section contains two questions and students are required to attempt Five questions in all, selecting at least one question from each Section. All questions carry equal marks.
P.T.O.

Section I

1. (a) Define space curve and find the unit vector along the tangent to a given curve. Also derive the formula for arc length.

10
(b) What is Torsion ? Find an expression for the torsion at a point P of a given curve. Also show that the necessary and sufficient condition that a given curve is a plane curve is that $\tau=0$ at all points.
2. (a) Prove that in order the principal normals of a curve be binormals of another, the relation $a\left(\mathrm{~K}^{2}+\tau^{2}\right)=b \mathrm{~K}$ must hold, where a and b are constants.

10
(b) Obtain the curvature and torsion of a curve given by the intersection of two surface.

10
(b) Derive canonical Geodesics equations and show that the curves $u+v=$ constant are geodesics on a surfaces with metric $\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2} . \mathbf{1 0}$
8. (a) Find the geodesic curvature of the parametric curve $v=c$ and also prove that all straight lines on a surface are geodesics.

10
(b) Define Torsion of a Geodesic and derive the expression for torsion of a geodesic in term of principal curvature and if K and τ are the curvature and torsion of a geodesic, prove that $\tau^{2}=\left(\mathrm{K}-\mathrm{K}_{a}\right)\left(\mathrm{K}_{b}-\mathrm{K}\right) . \quad \mathbf{1 0}$
(b) Derive canonical Geodesics equations and show that the curves $u+v=$ constant are geodesics on a surfaces with metric $\left(1+u^{2}\right) d u^{2}-2 u v d u d v+\left(1+v^{2}\right) d v^{2} . \mathbf{1 0}$
8. (a) Find the geodesic curvature of the parametric curve $v=c$ and also prove that all straight lines on a surface are geodesics.
(b) Define Torsion of a Geodesic and derive the expression for torsion of a geodesic in term of principal curvature and if K and τ are the curvature and torsion of a geodesic, prove that $\tau^{2}=\left(\mathrm{K}-\mathrm{K}_{a}\right)\left(\mathrm{K}_{b}-\mathrm{K}\right) . \quad \mathbf{1 0}$

