**8.** Explain Ritz method for two dimensional case and find an approximate solution to the problem of extremising the functional :

$$I(z) = \iint_{D} \left[ z_x^2 + z_y^2 - 2z \right] dxdy$$

where the region R is a square  $-a \le x \le a$ ,  $-a \le y \le a$  and z = 0 on the boundary of the square D.

No. of Printed Pages: 04 Roll No. ......

# **DD317**

# M.Sc. EXAMINATION, May 2019

(Fourth Semester)

(B. Scheme) (Main & Re-appear)

**MATHEMATICS** 

MAT616B

Mechanics of Solids-II

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

**Note**: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-37/17)M-DD317 P.T.O.

### Unit I

- 1. (a) Explain generalized plan stress.
  - (b) Derive general solution of biharmonic equation.
- **2.** (a) Derive displacement and stress of thick walled tube under external and internal pressure.
  - (b) Write a short note on first and second boundary value problem of plane elastic body in terms of airy stress function.

### **Unit II**

- **3.** (a) Define spring and despot. Drive constitutive equation of SLS model.
  - (b) Explain creep and relaxation phenomenon of Maxwell model.
- **4.** Using correspondence principle of lenear viscoelasticity, derive displacement of Kelvin model in viscoelastic medium.

M-DD317 2

### **Unit III**

- **5.** (a) Show that maximum stress occurs on the boundary of the cross-section.
  - (b) Show that in the torsion of elliptic cylinder:

$$\tau = \frac{2\mu \alpha ab}{a^2 + b^2} \sqrt{a^2 - e^2 x^2}$$

where 
$$e = \frac{1}{a} \sqrt{a^2 - b^2}$$
.

**6.** Explain propagation of love wave.

#### **Unit IV**

- 7. (a) Show that potential energy of all displacement satisfying the given b.c., those which satisfy the ≡ 1m equations make the potential energy as absolute minimum.
  - (b) Write a short note on deflection of an elastic string.

(3-37/18)M-DD317

3

P.T.O.