6. Trains arrive at the yard every 15 minutes and the service time is 33 minutes. If the line capacity of the yard is limited to 4 trains, find :
(a) The probability that the yard is empty
(b) The average number of trains in the system.

Unit IV

7. Solve the following all integer programming problem using Branch and Bound technique Max. $Z=3 x_{1}+5 x_{2}$

Subject to constraints

$$
\begin{align*}
2 x_{1}+4 x_{2} & \leq 25 \\
x_{1} & \leq 8 \\
2 x_{2} & \leq 10 \\
\text { and } \quad x_{1}, x_{2} & \geq 0 \text { and integer. } \tag{20}
\end{align*}
$$

M-DD-318
\qquad

DD-318

M. Sc. EXAMINATION, Dec. 2017
(Fourth Semester)
(Re-appear Only)
Mathematics
MAT-618-B
Operation Research

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(3-52/1) M-DD-318
P.T.O.

Unit I

1. Using Penality (Big-M) method, solve the following L.P.P. :

Max. $z=x_{1}+3 x_{2}-2 x_{3}$
Subject to

$$
\begin{aligned}
-x_{1}-2 x_{2}-2 x_{3} & =-6 \\
-x_{1}-x_{2}+x_{3} & \leq-2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

2. Using Dual Simplex Method, solve the given
L.P.P. :

Min. $\mathrm{Z}=x_{1}+2 x_{2}+3 x_{3}$
Subject to

$$
\begin{aligned}
2 x_{1}-x_{2}+x_{3} & \leq 4 \\
x_{1}+x_{2}+2 x_{3} & \leq 8 \\
x_{2}-x_{3} & \geq 2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

M-DD-318

Unit II

3. Solve the following assignment problem : $\mathbf{2 0}$

	I	II	III	IV	V
A	9	11	15	10	11
B	12	9	-	10	9
C	-	11	14	11	7
D	14	8	12	7	8

4. Solve the following transportation problem to maximize profit and give criteria for optimality: 20

Origin	Profit				
	1	2	3	4	Supply
A	40	25	22	33	100
B	44	35	30	30	30
C	38	38	28	30	70
Demand	40	20	60	30	

Unit III

5. A company uses Rs. 10,000 worth of an item during the year. The ordering costs are Rs. 25 per order and carring changes are 12.5% of the average inventory value. Find the economic order quality, number of order per year, time period per order and the total cost.
P.T.O.
6. Solve the following non-linear programming problem :
Max. $z=7 x_{1}^{2}+6 x_{1}+5 x_{2}^{2}$
Subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+ & \leq 10 \\
x_{1}-3 x_{2} & \leq 9 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

8. Solve the following non-linear programming problem :
Max. $z=7 x_{1}^{2}+6 x_{1}+5 x_{2}^{2}$
Subject to

$$
\begin{aligned}
x_{1}+2 x_{2}+ & \leq 10 \\
x_{1}-3 x_{2} & \leq 9 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

