Unit III

- 5. (a) Let $a \in K$ be an algebraic element over F. Then prove that there exists a unique monic irreducible polynomial $p(x) \in F[x]$ such that p(a) = 0. Further prove that F(a) is an intension field of F that contains a and [F(a) : F] = degree of p(x).
 - (b) If K is a finite extension over L and L is a finite extension over F, then prove that K is also a finite extension over F.
- 6. (a) Define splitting field of a polynomial over a field. Find the splitting field of the polynomial $x^4 + 1$ and the degree of extension over \mathbb{Q} , the field of rational numbers.
 - (b) If p(x) is a polynomial in F[x] of degree $n \ge 1$ and is irreducible over F, then prove that there is an extension E of F, such that [E, F] = n, in which p(x) has a root.

M-GG-341 4

No. of Printed Pages: 05 Roll No.

GG-341

B. Sc. (Hons)/M. Sc. EXAMINATION, Dec. 2017

(Seventh Semester)

(Dual Degree) (Main & Re-appear)

MATHEMATICS

MAT-511-H

Advanced Abstract Algebra

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-37/16)M-GG-341

P.T.O.

Unit I

1. (a) Let G be a finite group. Then prove that:

$$O(G) = O(Z(G)) + \sum_{a \notin Z(G)} \frac{O(G)}{O(N(a))},$$

where O(A) denotes the number of elements in A.

- (b) Let G be a finite group of the order $p^m q$, where p, q are primes and integer $m \ge 1$. Then prove that there exists a subgroup H of G of the order p^m .
- **2.** (a) If $a, b, c \in G$, then show that :
 - (i) [a, b, c] = e if and only if $[a, b]^c = [a, b]$.
 - (ii) $[ab, c] = [a, c]^b [b, c]$ and $[a, bc] = [a, c][a, b]^c$
 - (iii) $[a, b^{-1}, c]^b [b, c^{-1}, a]^c [c, a^{-1}, b]^a = e.$
 - (b) State and prove Jordan-Holder theorem for arbitrary groups.

2

Unit II

- 3. (a) Define nilpotent and solvable groups.

 Prove that every nilpotent group is solvable. Give an example of a solvable group which is not nilpotent.
 - (b) Define lower and upper central series of a group. Prove that if group G is nilpotent of class c, then:
 - (i) $Z_c(G) = G$ and $Z_{c-1}(G) \neq G$,
 - (ii) γ_{c+1} (G) = $\{c\}$ and γ_c (G) $\neq \{e\}$.
- 4. (a) Let G be a solvable group and H be a normal subgroup of G. Then prove that H and G|H both are solvable.
 - (b) Prove that S_n is not solvable for any integer $n \ge 5$.

M-GG-341

(3-37/17)M-GG-341

3

P.T.O.

Unit IV

- 7. (a) Define normal extension. Prove that every finite normal extension is the splitting field of some polynomial.
 - (b) Show that the set of non-zero element of a finite field forms a multiplicative cyclic group.
- **8.** (a) Prove that the Galois group of $x^3 2$ over Q is isomorphic to S_3 , the symmetric group of degree 3.
 - (b) Show that it is impossible to duplicate the cube by ruler and compass.

Unit IV

- 7. (a) Define normal extension. Prove that every finite normal extension is the splitting field of some polynomial.
 - (b) Show that the set of non-zero element of a finite field forms a multiplicative cyclic group.
- **8.** (a) Prove that the Galois group of $x^3 2$ over Q is isomorphic to S_3 , the symmetric group of degree 3.
 - (b) Show that it is impossible to duplicate the cube by ruler and compass.