Unit IV

7. (a) State and prove Cauchy's Goursat theorem.

10
(b) Evaluate $\int_{\mathrm{C}} \frac{e^{z}}{z-2} d z, \mathrm{C}:|z-0|=3$ with the help of Cauchy residue theorem. 5
8. (a) State and prove Schwartz Reflection principle.

10
(b) Expand $f(z)=\frac{1}{z(z-2)}$ in a Laurent series valid for :
(i) $0<|z|<2$
(ii) $|z|>2$.
\qquad

HH-344

Dual Degree B. Sc.(Hons.)/M.Sc. EXAMINATION, May 2018

(Eighth Semester)
(Main \& Re-appear)
MATHEMATICS
MAT518H
Complex Analysis

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
(3-10/9) M-HH-344
P.T.O.

Unit I

1. (a) Discuss spherical representation of complex number with the help of Riemann Sphere.
(b) Derive Lagrange's identity for complex numbers.
2. (a) Define power series and discuss redius of convergence and circle of convergence. State and prove Abel's Limit Theorem.
(b) Find the radius of convergence of the series :

5

$$
\frac{z}{2}+\frac{1.3}{2.5} z^{2}+\frac{1.3 .5}{2.5 .8} z^{3}+
$$

Unit II

3. (a) Prove that a set is compact iff it is complete and totally bounded.
(b) Prove that set of all bilinear transformations form a linear group w.r.t. product of transformations.

8
4. (a) Define cross ratio. Show that cross ratio remains invariant under a bilinear transformation. 7
(b) State and prove Lioville's theorem. $\mathbf{8}$

Unit III

5. (a) Define complex integration. Derive Cauchy integral formula and extend it to multiply connected region. 8
(b) Evaluate : 7

$$
\int_{\mathrm{C}} \frac{d z}{z(z+\pi i)},
$$

C: $|z+3 i|=\mathrm{I}$
6. (a) State and prove maximum modulus principle.

8

(b) Expand $f(z)=\frac{z}{z^{4}+9}$ as a Taylor series about $z=0$. Find also radius of convergence. 7
(3-10/10)М-HH-344
3
P.T.O.

