8.	(a)	If	T	\in	A(V),	set		of	all	linear	
		traı	nsfo	rmat	tion	for	V	to	V,	has	all	its
		cha	ract	erist	tic r	oot	in	f,	then	the	re i	s a
		basis of V in which matrix representation										
		T is triangular.										12

- (b) Define the following:
 - (i) Nilpotent transformation
 - (ii) Index and Nilpotency
 - (iii) Rational Canonical forms. 3

No. of Printed Pages: 04 Roll No.

HH-342

M. Sc. EXAMINATION, May 2017

(5 Years Integrated)

(Eighth Semester)

(Main & Re-appear)

MATHEMATICS

MAT-514-H

Rings and Modules

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-21) M-HH-342 P.T.O.

Unit I

1. (a) Define the following:

		(1) Cyclic modules	
		(ii) Simple and semi-simple module	S
		(iii) Free modules.	8
	(b)	State and prove Schur's Lemma.	7
2.	State	and prove Fundamental structure theor	em
	of f	nitely generated modules over princi	pal
	ideal	domain.	15
		Unit II	
3.	(a)	Define the following:	
		(i) Neotherian and Artinian module	S
		(ii) Neotherian and Artinian rings	
		(iii) Nil and Nilpotent ideals	in
		Neotherian ring.	8
	(b)	Every homomorphic image of	a
		Neotherian module is Neoetherian.	7
	~	and prove Hilbert Basis theorem.	15

Unit III

5. State and prove Wedderburn-Artin theorem. 15

6. Define the following:

(i) $Hom_R(R, R)$

(ii) Opposite rings

(iii) Maschk's theorem (statement only)

(iv) Uniform modules

(v) Primary modules

(vi) Neother Laskar theorem.

15

Unit IV

7. (a) Determine all possible Jordan Canonical forms for a linear operator :

T: V \rightarrow V whose characteristic polynomial is $\Delta(x) = (x-2)^3 (x-5)^2$.12

(b) Define Jordan blocks and Jordan forms.

3

(2-21) M-HH-342

3

P.T.O.