Unit IV

7. (a) Define the following terms using suitable examples :
(i) Enciphering
(ii) Deciphering
(iii) Monoalphabetic cipher
(iv) Polyalphabetic cipher.
(b) Encipher the message HAPPY DAYS ARE HERE using the autokey cipher with seed Q .
8. Explain ElGamal cryptosystem in detail. The message REPLY TODAY is to be encrypted in the ElGamal cryptosystem and forwarded to a user with public key $(47,5,10)$ and private key $\mathrm{K}=19$. If the random integer chosen for encryption is $\mathrm{j}=3$, determine the ciphertext. Indicate how the ciphertext can be decrypted using the recipient's private key.
\qquad

II-344

M. Sc. EXAMINATION, May 2017
(Ninth Semester)
(5 Years Integrated)
(Main \& Re-appear)
ANALYTICAL NUMBER THEORY
AND CRYPTOGRAPHY
MAT-617-H

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) Prove that primes of the form $4 k+1$ are infinite.
(2-45/5) M-II-344
P.T.O.
(b) Prove that $\operatorname{gcd}\left(\mathrm{F}_{m}, \mathrm{~F}_{n}\right)=1$, where $m>n \geq 0$ and $\mathrm{F}_{m}, \mathrm{~F}_{n}$ are format numbers.
(c) If p and $q=2 p+1$ are primes, then prove that q / M_{p} or $q / \mathrm{M}_{p}+2$, but not both.
2. (a) If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive fractions in a Farey sequence, then prove that among all rational fractions, with value between these two $\frac{a+c}{b+d}$ is the unique fraction with smallest denomination.
(b) State and prove Hurwitz theorem.

Unit II

3. (a) Prove that all the solutions of $x^{2}+y^{2}=z^{2}$ in integers x, y, z such that $x>0, y>0,>0, \operatorname{gcd}(x, y)=1$ and $2 / x$ are given by $x=2 a b, y=a^{2}-b^{2}$, $z=a^{2}+b^{2}$ where $a>b>0, \operatorname{gcd}(a, b)$ $=1$. and a, b have opposite parity.
(b) Define $g(k)$ and $\mathrm{G}(k)$ and prove that $g(2)=G(2)=4$.
4. (a) State and prove Lagrange's Four Square theorem.
(b) Find the least positive integer x such that $x \equiv 5(\bmod 7), x \equiv 7 \quad(\bmod 11)$ and $x \equiv 3(\bmod 13)$.

Unit III

5. (a) Define Legendre symbol. State and prove Gauss lemma on Legendre symbols.
(b) If P and Q are odd and positive and if $(\mathrm{P}, \mathrm{Q})=1$, then prove that :

$$
\left(\frac{\mathrm{P}}{\mathrm{Q}}\right)\left(\frac{\mathrm{Q}}{\mathrm{P}}\right)=(-1)^{\{(\mathrm{P}-1) / 2\}\{(\mathrm{Q}-1) / 2\}}
$$

6. (a) Prove that the group $U_{2} e$ is cyclic if and only if $e=1$ or $e=2$.
(b) Define Primitive Root. If p is an odd prime and g is a primitive root modulo p. Then prove that either g or $g+p$ is a primitive root modulo p^{2}.
P.T.O.
