- 5. Solve the equation y'' = x + y with the boundary condition y(0) = y(1) = 0. 15
- **6.** Apply Runge-Kutta method to find approximate value of y for x = 0.2 in step of 0.1, if :

$$\frac{dy}{dx} = x + y^2$$

15

given that y = 1 where x = 0.

Unit IV

7. Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in figure: 15

0	50	0 10	000	500	_0
		С			
1000		u_1	u_2	u_3	-1000
1000	A			В	1000
2000	Λ	u_4	u_5	u_6	-2000
2000					72000
1000		u_7	u_8	u_9	1000
1000					1000
		D			
0	50	0 10	00	500	0

M-18AA1351 4

No. of Printed Pages: 05 Roll No.

18AA1351

M. Tech. EXAMINATION, May 2019

(First Semester)

(C Scheme) (Re-appear)

CHE

CHE501C

Mathematical and Statistical Methods in Chemical Engg.

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

(1-02/13) M-18AA1351

P.T.O.

Unit I

1. (a) If P is the pull required to lift a load W by means of a pulley block, find the linear law of the form P = mW + C connecting P and W. Using the following data;

P : 14 17 21 25

W : 50 70 100 120

where P and W are taken in kg-wt.

Compute P when W = 150 kg.

7

(b) Using Newton's backward difference formula, construct an interpolating polynomial of degree three for the data :

$$f(-0.75) = -0.0718125$$

$$f(-0.5) = -0.0247$$

$$f(-0.25) = -0.3349375$$

$$f(0) = 1.10100$$

Hence find $f\left(-\frac{1}{3}\right)$.

M-18AA1351

2

- 2. (a) Find the real root of the equation $x^2 2x 5 = 0$ by method of false position correct to three decimal places.
 - (b) Find the root of the equation $x^2 4x 9 = 0$ using bisection method correct to three decimal places.

Unit II

3. Solve the equation :

$$10x + y - z = 11.19$$
$$x + 10y + z = 2.08$$

$$-x + y + 10z = 35.61$$

by Jacobi iteration method correct to two decimal places.

4. (a) Solve the equations :

$$10x - 7y + 3z + 5u = 6$$

$$-6x + 8y - z - 4u = 5$$

$$3x + y + 4z + 11u = 2$$

$$5x - 9y - 2z + 4u = 7$$

by Gauss-Jordan Method.

(b) Explain Gauss Elimination Method Theoretically. 3

(1-02/14) M-18AA1351

3

P.T.O.

12

8. Solve the equation

$$\nabla_u^2 = -10(x^2 + y^2 + 10)$$

over the square with sides x = 0 y, x = 3 = y with u = 0 on the boundary and mesh length = 1.

8. Solve the equation

$$\nabla_u^2 = -10 (x^2 + y^2 + 10)$$

over the square with sides x = 0 y, x = 3 = y with u = 0 on the boundary and mesh length = 1.

M-18AA1351 5 40 (1-02/15) M-18AA1351 5 40