Unit III

\qquad
5. Solve the equation $y^{\prime \prime}=x+y$ with the boundary condition $y(0)=y(1)=0 . \quad 15$
6. Apply Runge-Kutta method to find approximate value of y for $x=0.2$ in step of 0.1 , if :

$$
\frac{d y}{d x}=x+y^{2}
$$

given that $y=1$ where $x=0$.

Unit IV

7. Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in figure :

M-18AA1351
4

18AA1351

M. Tech. EXAMINATION, May 2019

(First Semester)
(C Scheme) (Re-appear)
CHE
CHE501C
Mathematical and Statistical Methods in
Chemical Engg.

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.
(1-02/13) M-18AA1351
P.T.O.

Unit I

1. (a) If P is the pull required to lift a load W by means of a pulley block, find the linear law of the form $\mathrm{P}=m \mathrm{~W}+\mathrm{C}$ connecting P and W. Using the following data ;
$\begin{array}{llllll}\mathbf{P} & : & 14 & 17 & 21 & 25\end{array}$
W : $\quad 50 \quad 70 \quad 100 \quad 120$
where P and W are taken in kg -wt.
Compute P when $\mathrm{W}=150 \mathrm{~kg}$.
(b) Using Newton's backward difference formula, construct an interpolating polynomial of degree three for the data :
$f(-0.75)=-0.0718125$
$f(-0.5)=-0.0247$
$f(-0.25)=-0.3349375$
$f(0)=1.10100$
Hence find $f\left(-\frac{1}{3}\right)$.
2. (a) Find the real root of the equation $x^{2}-2 x-5=0$ by method of false position correct to three decimal places.
(b) Find the root of the equation $x^{2}-4 x-9=0$ using bisection method correct to three decimal places.

Unit II

3. Solve the equation :

$$
\begin{aligned}
10 x+y-z & =11.19 \\
x+10 y+z & =2.08 \\
-x+y+10 z & =35.61
\end{aligned}
$$

by Jacobi iteration method correct to two decimal places.
4. (a) Solve the equations :

$$
\begin{aligned}
& 10 x-7 y+3 z+5 u=6 \\
&-6 x+8 y-z-4 u=5 \\
& 3 x+y+4 z+11 u=2 \\
& 5 x-9 y-2 z+4 u=7 \\
& \text { by Gauss-Jordan Method. }
\end{aligned}
$$

(b) Explain Gauss Elimination Method Theoretically.
8. Solve the equation

$$
\nabla_{u}^{2}=-10\left(x^{2}+y^{2}+10\right)
$$

over the square with sides $x=0 y, x=3=y$ with $u=0$ on the boundary and mesh length $=1$.
8. Solve the equation

$$
\nabla_{u}^{2}=-10\left(x^{2}+y^{2}+10\right)
$$

over the square with sides $x=0 y, x=3=y$ with $u=0$ on the boundary and mesh length $=1$.

