6. Write notes on the following :
(a) Rooted trees
(b) Graphs and Planar graph.

Unit IV

7. The transition probability matrix of a Markov chain $\left\{\mathrm{X}_{n}\right\}, n=1,2,3 \ldots \ldots$ having 3 states 1 , 2 and 3 is : 15

$$
p=\left[\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.6 & 0.2 & 0.2 \\
0.3 & 0.4 & 0.3
\end{array}\right]
$$

And the initial distribution is $p^{(0)}=(0.7,0.2$, 0.1).

Find (i) $\mathrm{P}\left(\mathrm{X}_{2}=3\right)$
(ii) $\mathrm{P}\left(\mathrm{X}_{3}=2, \mathrm{X}_{2}=3, \mathrm{X}_{1}=3, \mathrm{X}_{0}=0\right)$
8. Write notes on the following :
(a) Birth-Death processes
(b) Random variables.
\qquad

AA583

M. Tech. EXAMINATION, May 2019

(First Semester)
(B. Scheme) (Re-appear Only)
(CSE)
CSE505B
MATHEMATICS FOUNDATIONS OF COMPUTER SCIENCE

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) Prove that:

7
$\mathrm{A} \cap$ (B
$(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}$
$(\mathrm{A} \cap \mathrm{B})$
B) $\cup(A \cap C)$
(b) Show that the following statement is ambiguous :
$\mathrm{S} \rightarrow \mathrm{aSbS}$
$\mathrm{S} \rightarrow \mathrm{bSaS}$
$S \rightarrow \in$
2. (a) Define Well formed formula. Explain about Tautology with example.
(b) Explain in brief Type-3 languages with examples.

Unit II

3. (a) Solve the recurrence relation :

$$
a_{r+2}-3 a_{r+1}+2 a_{r}=0
$$

with the initial conditions $a_{0}=2, a_{1}=3$.
(b) Define Cosets. Prove that in a group the inverse of any element is unique.
4. (a) Let $\mathrm{G}=\{-1,0,1\}$. Verify that G forms an abelian group under addition. 8
(b) With the help of suitable examples, explain what are rings.

Unit III

5. (a) Illustrate the procedure to determine the minimal spanning tree from a weighted graph. Support your illustration using an example.
(b) Show that the graphs G1 and G2 are isomorphic by defining a 1-1 correspondence between the vertex sets and the edge sets.

3
p.T.O.

