No. of Printed Pages: 03 Roll No.

CC-184

M. Tech. EXAMINATION, May 2017

(Third Semester)

(Re-appear Only)

(CHE)

CHE-653-B

FUEL CELL TECHNOLOGIES

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt any *Five* questions. Scientific Calculator is allowed.

(3-16/13)M-CC-184

P.T.O.

Unit I

- What is activation over-voltage? Discuss the simplification of activation kinetics by tafel equation.
- 2. Derive Bulter-Volmer equation to get an expression for relation between Current and Voltage in electrochemical systems.

Unit II

- 3. A 10 cm² PEMFC employs an electrolyte membrane with conductivity of $0.10\,\Omega^{-1}$. cm⁻¹. $R_{\rm elec}$ is $0.005\,\Omega$. Assuming the only other contribution to cell resistance comes from electrolyte membrane, determine the ohmic voltage loss at current density of 1A/cm^2 if:
 - (a) Electrolyte membrane is 100 µm thick
 - (b) Electrolyte membrane is 50 µm thick.

15

4. Define Flux. Discuss the forces for charge transport in detail.

Unit III

- 5. What are the forces that derive diffusion transport? Discuss losses in fuel cell. 15
- 6. What is flow structure design? Write the criteria for material selection for the use in flow structures. Discuss flow structure patterns in detail.

Unit IV

- 7. What are the types of fuel cell characterisation? Discuss fundamental variables used in different characteristics techniques. 15
- 8. Write notes on the following characterisations:
 - (a) Gas permeability
 - (b) Structure determination
 - (c) Chemical Determination.

M-CC-184 2

(3-16/14)M-CC-184

3

20