Unit III

5. A, diet conscious housewife wishes to ensure certain minimum intake to vitamins A, B and C for a family. The minimum daily needs of the vitamins $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for the family are respectively 30,20 and 16 Units. For the supply of these minimum vitamin requirements, the housewife relies on two fresh foods. The first one provides $7,5,2$ units of the three vitamins per gram respectively and the second one provides $2,4,8$ Units of the same three vitamins per gram of the foodstuff respectively. The first food stuff costs Rs. 3 per gram and the second Rs. 2 per gram. The problem is how many grams of each food stuff should the housewife by everyday to keep her food bill as low as possible ?
(a) Formulate the problem as LPP.
(b) Write the dual problem, solve it by using simplex method.
(c) Interpret the dual problem and its solution.15

Unit II

Unit I

1. (a) Discuss the local maximum or minimum point (if any) of the function :
$f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+10 x_{1}-x_{1}^{2}+x_{2}^{2}-x_{3}^{2}$
(b) State the necessary and sufficient conditions for unconstrained minimum of functions.
2. (a) Discuss Newton and quasi-Newton method. 5
(b) Find the minimum of the function :
$f(x)=0.65-\frac{0.75}{1+x^{2}}-0.65 x \tan ^{-1}\left(\frac{1}{x}\right)$
Using quasi-Newton method with the starting point $x_{1}=0.1$ and the step size $\Delta x=0.01$ in central difference formulas. Take $\in=0.01$ for checking the convergence.

10
3. (a) Write a note on Random search and grid search.
(b) Minimize

$$
f\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+3 x_{2}^{2}-5 x_{1} x_{2}-8 x_{1}
$$

starting from point $(0,0)$ using Powell's method. Perform four interations.
4. (a) Solve the following system of equations using Newton's method of unconstrained minimization with the starting point. 10

$$
\begin{aligned}
& \mathrm{X}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& 2 x_{1}-x_{2}+x_{3}=-1 \\
& x_{1}+2 x_{2}=0 \\
& 3 x_{1}+x_{2}+2 x_{3}=3
\end{aligned}
$$

(b) Enumerate on conjugate search method.
(b) Write a note on novel techniques for optimization of non-linear programming problem with constraints.
8. Write notes on the following :
(a) General Reduced gradient
(b) Successive quadratic programming.
6. (a) Use graphical method to:

Maximize $Z=4 x_{1}+3 x_{2}$
Subject to the constraints

$$
\begin{aligned}
3 x_{1}+4 x_{2} & \leq 24 \\
4 x_{1}+3 x_{2} & \leq 24 \\
x_{1} & \leq 5 \\
x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b) Use simplex method to

Maximize $\mathrm{Z}=50 x_{1}+75 x_{2}$
Subject to the constraints

$$
\begin{aligned}
3 x_{1}+4 x_{2} & \leq 4000 \\
8 x_{1}+9 x_{2} & \leq 7000 \\
x_{1}+x_{2} & \leq 1500 \\
x_{1} & \geq 150 \\
x_{2} & \geq 90
\end{aligned}
$$

Unit IV

7. (a) Discuss necessary and sufficient conditions for local extremum for nonlinear programming.
