- 8. (a) What are the applications of layout compaction?
 - (b) Explain the Constraint-Graph Based Hierarchical Compaction. 7½

No. of Printed Pages: 04 Roll No.

CC-65

M. Tech. EXAMINATION, May 2017

(Third Semester)

(Re-appear Only)

ECE(Industry Integrated)

MTEC-609-B

ALGORITHM FOR VLSI DESIGN

Time: 3 Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks. Use of calculator is allowed.

M-CC-65 4 60 (3-15/7) M-CC-65 P.T.O.

Unit I

- 1. (a) Discuss different design styles involved in VLSI physical design. 7½
 - (b) Distinguish between Depth-First search and Breadth-First search methods. 7½
- 2. Partition the graph shown in Figure below, using Kernighan-Lin algorithm.15

Unit II

- 3. (a) Discuss the Classification of Pin Assignment Algorithms. 7½
 - (b) Explain Integer programming based floor planning. 7½

M-CC-65 2

- 4. (a) Explain problems associated during placement in physical design process. 7½
 - (b) Discuss the Force Directed Placement algorithm. 7½

Unit III

- 5. (a) Discuss the different phases in global routing. 7½
 - (b) Explain Lee's and Soukup's Maze Routing algorithms. 7½
- 6. (a) What are the parameters associated with the routing problems and explain? 7½
 - (b) Explain single layer routing algorithms.

 $7\frac{1}{2}$

Unit IV

- 7. (a) Compare different Two-Layer Over-the-Cell routing algorithms. 7½
 - (b) Explain Unconstrained Via Minimization.

 $7\frac{1}{2}$

(3-15/8) M-CC-65 3 P.T.O.