4. (a) Derive Hagen Poiseuille Equation for volumetric flow Q and pressure drop ΔP.8

(b) Water is to flow through a capillary tube
20 μm in diameter over length of 1000 μm. Use Hagen Poiseuille equation to determine the pressure drop in flow.

Unit III

5. (a) Discuss and compare impact of scaling in electrostatic and electromagnetic forces.

10

- (b) Apply Trimmer force scaling vector on power density.5
- 6. (a) Explain the process and chemical reactions of deposition Silicon Dioxide their film over silicon.8
 - (b) Discuss the process and equipments of MBE.

4

No. of Printed Pages: 05 Roll 1

Roll No.

CC64

M. Tech. EXAMINATION, May 2019

(Third Semester)

(B. Scheme) (Re-appear)

(ECE)

MTEC607B

MEMS & IC INTEGRATION

Time: 3 Hours]

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

(2-23/16) M-CC64

P.T.O.

M-CC64

Unit I

- 1. (a) Compare microelectronics and microsystems.
 - (b) Discuss the contribution of MEMS in optical fiber communication.7
- **2.** (a) Describe 3 principal signal transduction methods of micro-pressure sensor. List advantages and disadvantages of each. **10**
 - (b) Estimate output voltage for microthermopile as shown in figure Cu wires are used for thermocouples with hot junction at 120°C and cold junction at 20°C.

Unit II

- (a) Discuss design of beam springs used in microaccelerometer design and derive expression for natural frequency of beam spring mass system.
 - (b) Find maximum amplitude of vibration for5g Si microderive attached to a fine stripmade of Si as shown in figure: 5

spring constant of strip = 18,240 N/m. The mass is pulled down by 5 μ m initially and is released at rest.

M-CC64 2

(2-23/17) M-CC64

3

P.T.O.

Unit IV

7.	(a)	Compare	Isotropic	and	Anisotropic
		Etching.			7

(b) Draw and explain major steps in DRIE.

8

- 8. (a) List major differences and similarities between microassembly methods and traditional assembly methods.8
 - (b) Explain various considerations while selecting packaging materials for microsystems.7

Unit IV

- 7. (a) Compare Isotropic and Anisotropic Etching.
 - (b) Draw and explain major steps in DRIE.

8

- 8. (a) List major differences and similarities between microassembly methods and traditional assembly methods.8
 - (b) Explain various considerations while selecting packaging materials for microsystems.7

M-CC64 5 100

(2-23/18) M-CC64

5

100