carries a Live load of 2000 N/m², and it is finished with 20 mm thick granolithic topping, whose density is 17 KN/m³. Use M 25 and Fe 415. Draw Section along long span, short span, top and bottom of the reinforcement.

Unit IV

- 7. Design a combined footing for two columns located at a center to center distance of 4 metres. First columns is 350 mm * 350 mm in size and carries a load of 650 kN. Second column is 450 mm * 450 mm in size and carries a load of 800 kN. The safe bearing capacity of soil is 160 kN/m². Use M 25 and Fe 415.
- 8. Design a RCC footing for a 300 mm thick brick wall carrying a load of 120 kN per metre length of the wall. The Safe bearing capacity of soil is 110 kN/m². Use M 25 and Fe 415.

M-D-4002 4 450

No. of Printed Pages: 04 Roll No.

D-4002

B. Arch. EXAMINATION, May 2017

(Fourth Semester)

(B. Scheme) (Main & Re-appear)

STRUCTURAL DESIGN-IV

AR-206B

Time: 3 Hours] [Maximum Marks: 50

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks. All design should be supplemented by relevant drawing. Use M 25 and Fe 415 if not provided. Assume suitable data if not provided. Use of IS code IS-456 is allowed.

P.T.O.

(2-41/18) M-D-4002

Unit I

- 1. (a) State various assumptions used in LimitState method of Design.5
 - (b) What are Partial Factor of Safety? Define Partial factor of safety for materials and loads.5
- 2. (a) What are the various Limit States? 5
 - (b) Draw strain stress diagram for Steel and Concrete.5

Unit II

- 3. A rectangular beam subjected to following moments/forces: 10
 - (i) Bending Moments = 36 kNm
 - (ii) Shear Force = 26 kN
 - (iii) Torsional moments = 17 kNm

 Design the section taking M 25 and Fe 415.
- 4. The Flange of an isolated T beam is 100 mm thick and 1600 mm wide. Its web is 250 mm wide and the effective depth of the beam up
 M-D-4002
 2

to the center of tensile reinforcement is 600 mm. The tensile reinforcement consists of 4 no. 20 mm dia. bars. The beam is simply supported over a span of 7 metres. If the beam section is subjected to a bending moment of 150 kNm. Calculate the stress develop in steel and concrete. Take M 30 and Fe 415. 10

Unit III

- 5. Design a Reinforced concrete Slab measuring 5m × 6m in size. There is simply supported on all the four edges with corner held down, and carries a superimposed load of 3500 N/m². The floor carries a floor finish which weight 15 kN/m³. Use M 25 and Fe 415. Draw Section along long span, Short Span, Top and Bottom of the Reinforcement. 10
- 6. (a) Write difference between one-way and two-way slab.
 - (b) Design a reinforced concrete slab measuring 3 m * 8 m in size. The slab

(2-41/19) M-D-4002 3 P.T.O.