Unit IV

8. What is the meaning of Differentiation ? How is it different from integration? 14
9. Solve the following by using Matrix method :

14

$$
2 x-3 y=13,4 x+y=5
$$

\qquad

A-152

B.B.A. EXAMINATION, Dec. 2017

(First Semester)
(Re-appear Only)
(BBA)
BBA-103
BUSINESS MATHEMATICS

Time : 3 Hours] [Maximum Marks : 70
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all. Q. No. 1 is compulsory. Attempt other four questions, selecting one question from each Unit. All questions carry equal marks.
P.T.O.

1. Attempt all the following questions :
(a) Define set with example.
(b) What do you understand by minor and cofactor of a matrix ?
(c) Integrate the function $(2 x-3)^{2}$ with respect to x.
(d) Define arithmetic progression.
(e) A coin is tossed three times. Write their possible outcomes.
(f) Find Cartesian product of $\mathrm{A}=(5,6)$ and $\mathrm{B}=(3,4)$?
(g) Two business applications of geometric progression.
$2+2+2+2+2+2+2=14$

Unit I

2. What are the different types of Sets ? Explain with examples the presentation and equality of Sets.
3. If $\mathrm{U}=\{a, b, c, d, e, f\} ; \mathrm{A}=\{\mathrm{a}, b, c, d\}$, $\mathrm{B}=\{b, c, d, e\}$ and $\mathrm{C}=\{c, d, e, f\}$, then check that :
(a) $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$
(b) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
(c) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$.

Unit II

4. Define Logarithm. Write down the different laws of Logarithm.

14
5. Find the sum of the series $2 \times 5+5 \times 8+8$ $\times 11+$ \qquad up to n terms.

Unit III

6. What is the Bionomial theorem? Explain the General and Middle terms of Bionomial theorem.
7. If ${ }^{n} \mathrm{P}_{5}=20^{n} \mathrm{P}_{3}$ then find the value of n.
