\qquad

B-211

 B.C.A. EXAMINATION, May 2018

 B.C.A. EXAMINATION, May 2018
 (Second Semester)
 (B. Scheme) (Main \& Re-appear)
 BCA102B
 DIGITAL CIRCUITS AND LOGIC DESIGN

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions from given eight and any one at least from each Section. All questions carry equal marks.

Unit I

1. (a) Explain the floating point way of representation of numbers. 5
(b) Solve the following using K-Map : 10 $f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,7,9,11,13)$ $+d(2,12)$.
2. Explain error detecting and correcting codes with the help of an example. 15

Unit II

3. (a) State and explain De Morgan's theorem.
(b) Explain ASCII and EBCDIC Codes. 5
(c) What are the Venn diagrams ? Where these are used ? 5
4. Convert the following :

$(10011.011)_{2}$	$=($	$)_{8}$
$(245.61)_{8}$	$=($	$)_{16}$
$(4 \mathrm{~F} 2.6 \mathrm{~A})_{16}$	$=($	$)_{12}$
$(10101.1010)_{2}$	$=($	$)_{10}$

M-B-211
2

Unit III

5. (a) Realize OR, AND and NOT gates with the help of only NAND gates. 71/2
(b) Explain the working of multi level NAND and NOR Circuits.
6. (a) Realize a Excess three Code Converter.
(b) Realize Binary to Gray Code Converter.

Unit IV

7. (a) Realize XOR gate with the help of only four NAND Gates. 5
(b) Explain working and design of BCD to Seven Segment decoder.10
8. Write short notes on the following :
(a) Demultiplexer
(b) Comparator.
