18 C 701

B. Sc. EXAMINATION, 2020

(Third Semester)
(Main \& Re-appear)
(Maths)
DMT311B

ADVANCED CALCULUS

Time : $2^{1 ⁄ 2}$ Hours] [Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Four questions in all. All questions carry equal marks.

1. (a) By defination, prove that :

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \cos \frac{1}{x}, & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

is continuous at $x=0$.
(b) For $u=e^{x y z}$ find $\frac{\partial^{3} u}{\partial x \partial y \partial z}$.
(c) Evaluate $\int_{0}^{\pi} \log (1+a \cos x) d x$, by using differentiation under integral sign.
(d) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$.
2. (a) Prove that the function defined by $f(x)=\sin \frac{1}{x}, x \in \mathrm{R}^{+}$is continuous but not uniformly continuous on R^{+}.
(b) Verify Rolle's theorem for the function $f(x)=(x-a)^{m}(x-h)^{n}$, in the interval $[a, h]$, where m and n are positive integers.
3. State and prove Darboux theorem.
4. (a) If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, find the value of

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}
$$

(b) If $u=x^{2}+y^{2}+z^{2}, v=x y+y z+z x$, $w=x+y+z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
5. (a) Expand $e^{x} \sin y$ in powers of x and y as far as terms of third degree.
(b) If $z=2 u^{2}-v^{2}+3 w^{2}$, where $u=x e^{y}$,

$$
v=y e^{-x}, w=\frac{y}{x} \text { find } \frac{\partial z}{\partial x} \text { and } \frac{\partial z}{\partial y}
$$

6. (a) State and prove Young's theorem.
(b) Show that the function :
$f(x, y)=\left\{\begin{array}{ccc}\frac{x^{2} y^{2}}{x^{4}+y^{4}}, & \text { for } & (x, y) \neq(0,0) \\ 0, & \text { for } & (x, y)=(0,0)\end{array}\right.$
is not differentiable at the origin.
7. (a) Show that the rectangular solid of maximum volume that can be inscribed in a given sphere is a cube
(b) Examine the function $f(x, y)=x^{3}+y^{3}-$ $63(x+y)+12 x y$ for maxima and minima.
8. (a) Change the order of integration in :

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) d x
$$

and hence evaluate it.
(b) Find the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
9. (a) Evaluate $\iiint_{\mathrm{V}} \frac{d x d y d z}{x^{2}+y^{2}+z^{2}}$, where V is the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) Prove that relation :

$$
\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}
$$

