C512

B. Sc. EXAMINATION, 2020

(Third Semester)
(Main \& Re-appear)
(Phy.)
DPH203
MATHEMATICAL PHYSICS

Time : $2^{1 ⁄ 2}$ Hours] [Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Four questions in all. All questions carry equal marks.

1. (a) Define a linear vector space. Describe dimension and basis of a linear vector space and give at least one example.
(b) If A and B are Hermition matrices, then show that $i(\mathrm{AB}-\mathrm{BA})$ is also Hermition.
(c) If H is a subgroup of G , then prove that there exist one to one correspondence between two left (or right cosets) of H in G.
(d) Prove that the function $u=x^{3}-3 y^{2} x+$ $3 x^{2}-3 y^{2}+1$ satisfy Laplace equation and determine the corresponding regular function $u+i v$.
(e) Prove that $\mathrm{H}_{n}(-x)=(-1)^{n} \mathrm{H}_{n}(x)$.
2. (a) Obtained a set of four orthogonal vectors by Schmidt's method from the following vectors :
$\mathrm{U}=(1,0,0,1) \quad \mathrm{V}=(1,1,0,2)$
$\mathrm{W}=(1,1,2,-3) \quad \mathrm{X}=(1,1,1,1)$
(b) Given that $\{\alpha, \beta, \gamma\}$ is a linearly independent set of vectors, show that the set $\{\alpha+\beta, \beta+\gamma, \alpha+\gamma\}$ is also linearly independent.
3. (a) Reduce to normal form the following matrix :

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right]
$$

(b) Find the adjoint and inverse of the matrix :

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]
$$

(c) Let the vector space $V=R^{3}$, show that W is a subspace of V where $\mathrm{W}=\{(a, b, c): a+b+c=0\}$.
4. (a) State and prove rearrangement theorem.
(b) What are reducible and irreducible representations of a group ? State properties of latter.
5. (a) Construct the character table for group of symmetric operations of a square.
(b) Define cyclic group. Prove that the group of order 4 may or may not be a cyclic group.
6. (a) State and prove Cauchy integral theorem.
(b) Using Cauchy integral formula, evaluate :

$$
\int_{\mathrm{C}} \frac{\left(5 z^{2}-3 z+2\right) d z}{(z-1)^{3}}
$$

where C is a simple closed curve enclosing $z=1$.
7. (a) State and prove Morera's theorem.
(b) If $f(z)$ is analytic function of z, prove that :

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)^{2}\right|
$$

8. (a) From the generating function approach establish the expression for Hermite polynomial.
(b) From the generating function approach deduce the expression :
(i) $\quad x \mathrm{~L}_{n}{ }^{\prime}(x)=n \mathrm{~L}_{n}(x)-n \mathrm{~L}_{n-1}(x)$
(ii) $(2 n+1) \mathrm{P}_{n}(x)=\mathrm{P}_{n+1}{ }^{\prime}(x)-\mathrm{P}_{n-1}{ }^{\prime}(x)$
(iii) $\mathrm{J}_{-n}(x)=(-1)^{n} \mathrm{~J}_{n}(x)$.
9. (a) Solve the differential equation $x y^{\prime \prime}+3 y^{\prime}+4 x^{3} y=0$.
(b) What is Wronskian? Discuss the general method for obtaining the second linearly independent solution of second order differential equation for which Frobenius method yields only one solution.
