18A705

B. Sc. (Hons.)-M. Sc. Dual Degree EXAMINATION, 2021

(First Semester)

(B Scheme) (Main & Re-appear)

(MATHS)

DMT223B

OPERATIONS RESEARCH-I

Time: $2\frac{1}{2}$ Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

- 1. Describe the term Operation Research. Explain limitations, scope and applications of OR.
- **2.** (a) Solve the following problem graphically:

$$Max. Z = 5x + 2y,$$

Subject to constaints:

$$5x + 5y \le 15$$

$$10x + 4y \le 10$$

$$x, y \ge 0$$

(b) Describe the methodology of OR.

3. By using simplex method, find the solution of given LPP:

Max.
$$Z = 5x_1 + 3x_2$$
,

Subject to constraints:

$$x_1 + x_2 \le 2$$

$$5x_1 + 2x_2 \le 10$$

$$3x_1 + 8x_2 \le 10$$

$$x_1, x_2 \ge 0$$

4. Use the (Big-M) method to solve the given LPP:

Min.
$$Z = 5x_1 + 3x_2$$
,

Subject to constraints:

$$2x_1 + 4x_2 \le 12$$

$$2x_1 + 2x_2 = 10$$

$$5x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

5. Using Dual simplex method, solve the given LPP:

Max.
$$z = -3x_1 - x_2$$
,

subject to constraints:

$$x_1 + x_2 \ge 1$$

$$2x_1 + 3x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

6. Determine the optimal transportation plan from the following table :

Plant	$\mathbf{W_1}$	$\mathbf{W_2}$	$\mathbf{W_3}$	$\mathbf{W_4}$	Availability
F_1	11	20	7	8	50
F_2	21	16	10	12	40
F_3	8	12	18	9	60
Requirement	30	25	35	40	

7. Solve the following assignment problem:

		I	II	Ш	IV	\mathbf{V}	(Man)
	A	1	3	2	3	6	
	В	2	4	3	1	7	
(Task)	C	5	6	3	4	5	
	D	3	1	4	3	6	
	E	1	5	6	6	2	

- 8. Players A and B play a game in which each has three coins, a 5P, a 10P and a 20P. Each selects a coin without the knolwedge of the others choice. If the sum of the coins is an odd amount, then A wins B's coin. But, if the sum is even, then B wins A's coin. Find the best strategy for each player and the values of the game.
- 9. (a) What are the advantages and limitations of graphical method?
 - (b) Find all the basic feasible solution of given LPP:

$$Min. Z = x + y,$$

Subject to constraints:

$$x + y \leq 4$$

$$x - y \ge 5$$

$$x, y \geq 0$$

- (c) Explain transportation problem.
- (d) Write brief note on Assignment problem.
- (e) Convert the given LPP in to its dual form :

Max.
$$Z = 2x_1 + 3x_2$$
,

Subject to constraints:

$$x_1 - x_2 \ge 1$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$