## **JJ347**

## Dual Degree-B.Sc. (Hons.) Mathematics—M.Sc. Mathematics EXAMINATION, 2020

(Tenth Semester)

(B Scheme) (Re-appear)

(B.Sc. (Hons.) M.Sc. (MATHEMATICS))

## MAT624H

Applied Mechanics of Solids

Time: 2½ Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

**Note**: Attempt *Four* questions in all. All questions carry equal marks.

- 1. (a) Derive Beltrami-Michell compatibility condition for plane stress deformation.
  - (b) Derive displacement components for plane strain deformation in terms of airy stress function.
- 2. (a) Derive stresses and displacement components in terms of two analytic function.
  - (b) Explain rotating shaft.
- 3. Discuss the solution of beam stretched by its own weight.
- **4.** (a) Show that maximum shearing stress occurs on the boundary of the cross-section.

(b) Let  $D_0$  be the torsional rigidity of circular cylinder,  $D_e$  be the torsional rigidity of elliptic cylinder and  $D_t$  be that of equilateral cross-section. Show that for cross-section of equal area :

$$D_e = kD_0$$
  $D_t = \frac{2\pi\sqrt{3}}{15}D_0$ ,  $K = (2ab/a^2 + b^2) \le 1$ ,

where a, b are the semi-axis of the elliptic section.

- **5.** (a) Write exponential form of harmonic wave and also explain harmonic wave in phase and out of phase.
  - (b) Explain propagation of P and S-wave.
- **6.** Explain propagation of Love wave.
- 7. Explain Ritz method in one and two-dimensional and using Ritz method, find the approximate solution to the problem of extremising the functional:

$$I(z) \iint_{D} \left[ z_x^2 + z_y^2 - 2z \right] dx dy$$

where the region R is a equence  $-a \le x \le a$ ,  $-a \le y \le a$  and z = 0 on the boundary of the sequence.

- 8. Explain the following:
  - (a) Trefitz methods
  - (b) Rafalson method.