\qquad

JJ 343

Dual Degree-B.Sc. (Hons.) Mathematics-M.Sc.
 Mathematics EXAMINATION, 2020
 (Tenth Semester)
 (B Scheme) (Re-appear)
 (B.Sc. (Hons.) M.Sc. (Mathematics))
 MAT616H
 OPTIMIZATION TECHNIQUES

Time: $2 ½$ Hours]
[M aximum M arks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Four questions in all. All questions carry equal marks.

1. Solve the following integer linear programming problem using cutting plane method :

Subject to Constraints :

$$
\begin{aligned}
2 x_{1}+20 x_{2}+4 x_{3} & \leq 15 \\
6 x_{1}+20 x_{2}+4 x_{3} & =20 \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and are integers. }
\end{aligned}
$$

2. (a) What do you mean by goal programming ? Write the difference between linear programming problem and goal programming problem.
(b) Solve the given goal programming problem by graphical method :

Min. $\quad \mathrm{Z}=\mathrm{P}_{1} \mathrm{~d}_{1}^{-}+2 \mathrm{P}_{2} \mathrm{~d}_{2}^{-}+\mathrm{P}_{2} \mathrm{~d}_{3}^{-}+\mathrm{P}_{3} \mathrm{~d}_{1}^{+}$
Subject to $x_{1}+x_{2}+d_{1}^{-}-d_{1}^{+}=450$

$$
\begin{gathered}
\mathrm{x}_{1}+\mathrm{d}_{2}^{-}=250, \mathrm{x}_{2}+\mathrm{d}_{3}^{-}=350 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~d}_{1}^{-}, \mathrm{d}_{2}^{-}, \mathrm{d}_{3}^{-}, \mathrm{d}_{1}^{+} \geq 0
\end{gathered}
$$

3. Determine the value of μ_{1}, μ_{2} and μ_{3} so as to :

Max.

$$
z=\mu_{1} \cdot \mu_{2} \cdot \mu_{3}
$$

Subject to constraints :

$$
\begin{gathered}
\mu_{1}+\mu_{2}+\mu_{3}=10 \\
\mu_{1}, \mu_{2}, \mu_{3} \geq 0
\end{gathered}
$$

4. Max. $\quad z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$

Subject to: $\quad x_{1}+x_{2}+x_{3} \geq 15$
and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

5. Determine x_{1} and x_{2} so as to :

Max.

$$
z=12 x_{1}+21 x_{2}+2 x_{1} x_{2}-2 x_{1}^{2}-2 x_{2}^{2}
$$

Subject to the constraints :
$x_{2} \leq 8, x_{1}+x_{2} \leq 10, x_{1}, x_{2} \geq 0$.
6. Solve the given non-linear programming problem by using Lagrange's multiplier method :

Min.

$$
z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

Subject to the constraints :

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}=2 \\
5 x_{1}+2 x_{2}+x_{3}=5
\end{array}
$$

and

$$
x_{1}, x_{2} \geq 0
$$

(D20)(2)M-JJ 343
7. Use Wolfe's method to solve the quadratic programming problem :

Max.

$$
z=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} \cdot x_{2}-2 x_{2}^{2}
$$

Subject to the constraints :

$$
x_{1}+2 x_{2} \leq 2
$$

and
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
8. Explain the concept, formulation and solution of Geometric and Stochastic Programming Problems.

