JJ342

M. Sc. EXAMINATION, 2020

(5 Year Integrated)
(Tenth Semester)
(B Scheme)
(Main \& Re-appear)
MATHEMATICS
MAT614H
Theory of Automata
B. Sc (Hons.) M. Sc. (Mathematics)

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Design a deterministic finite state automaton over the alphabet $\{a, b\}$ that accepts only those words which do not end with $b a$.
(b) Design a NDFA for the language $\mathrm{L}=\{\mathrm{ab} u \mathrm{aba}\}^{*}$ over alphabet $\{\mathrm{a}, \mathrm{b}\}$. Whether this NDSA is unique ? Comment.
2. (a) Minimize the following DFSA :

(b) In the following NDFA, describe the processing of string 00101 by it :

Unit II

3. (a) Write regular expression for each language over $\{0,1\}$ given below :
(i) All strings not ending in 01
(ii) All strings containing an even number of 0's.
(b) Design a Moore machine which counts the occurrence of substring aab in input string.
4. (a) State and prove Pumping Lemma.
(b) State Ardens's Theorem and using this construct a regular expression corresponding to the state diagram given below :

Unit III

5. (a) Find context free grammars that generate the following regular language over $\{a, b\}:$
(i) All the strings without the substring aaa.
(ii) All strings that end in b and have an even number of b's in total.
(b) Discuss ambiguity in grammas by taking a suitable example.
6. (a) Consider the following CFG :
$\mathrm{S} \rightarrow \mathrm{XX}$
$\mathrm{X} \rightarrow \mathrm{XXX}|\mathrm{bX}| \mathrm{Xb} \mid \mathrm{a}$
Find the parse tree for the string bbaaaab.
(b) Change the following grammar into CNF :
$\mathrm{S} \rightarrow \mathrm{abSb}|\mathrm{a}| \mathrm{aAb}$
$\mathrm{A} \rightarrow \mathrm{bS} \mid \mathrm{aAAb}$

Unit IV

7. (a) Prove that the family of context free language is not closed under inter-section and complementation.
(b) Prove that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not context-free language.
8. (a) Discuss the simplifcation of context free grammars by taking examples.
(b) What do you mean by emptiness and finiteness in languages ? Whether the language generated by the following grammar is finite or infinite :
$\mathrm{S} \rightarrow \mathrm{XS} / \mathrm{b}$
$\mathrm{X} \rightarrow \mathrm{YZ}$
$\mathrm{Z} \rightarrow \mathrm{XY}$
$\mathrm{Y} \rightarrow \mathrm{ab}$
