No. of Printed Pages: 03 Roll No.

JJ342

M. Sc. EXAMINATION, 2020

(5 Year Integrated)

(Tenth Semester)

(B Scheme)

(Main & Re-appear)

MATHEMATICS

MAT614H

Theory of Automata

B. Sc (Hons.) M. Sc. (Mathematics)

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Design a deterministic finite state automaton over the alphabet $\{a, b\}$ that accepts only those words which do not end with ba.
 - (b) Design a NDFA for the language L = {ab u aba}* over alphabet {a, b}. Whether this NDSA is unique? Comment.

(1-11/20) M-JJ342

2. (a) Minimize the following DFSA:

(b) In the following NDFA, describe the processing of string 00101 by it :

Unit II

- 3. (a) Write regular expression for each language over {0, 1} given below:
 - (i) All strings not ending in 01
 - (ii) All strings containing an even number of 0's.
 - (b) Design a Moore machine which counts the occurrence of substring *aab* in input string.
- **4.** (a) State and prove Pumping Lemma.
 - (b) State Ardens's Theorem and using this construct a regular expression corresponding to the state diagram given below :

Unit III

- 5. (a) Find context free grammars that generate the following regular language over $\{a,b\}$:
 - (i) All the strings without the substring aaa.
 - (ii) All strings that end in b and have an even number of b's in total.
 - (b) Discuss ambiguity in grammas by taking a suitable example.
- **6.** (a) Consider the following CFG:

 $S \to XX$

 $X \rightarrow XXX|bX|Xb|a$

Find the parse tree for the string bbaaaab.

(b) Change the following grammar into CNF:

 $S \rightarrow abSb|a|aAb$

 $A \rightarrow bS|aAAb$

Unit IV

- 7. (a) Prove that the family of context free language is not closed under inter-section and complementation.
 - (b) Prove that the language $L = \{a^nb^nc^n \mid n \ge 0\}$ is not context-free language.
- 8. (a) Discuss the simplification of context free grammars by taking examples.
 - (b) What do you mean by emptiness and finiteness in languages? Whether the language generated by the following grammar is finite or infinite:

 $S \rightarrow XS/b$

 $X \rightarrow YZ$

 $Z \rightarrow XY$

 $Y \rightarrow ab$