FF343

M. Sc. (5 Year Integrated) EXAMINATION, 2020
(Sixth Semester)
(B Scheme)
(Main \& Re-appear)
MATHEMATICS
MAT416H
DYNAMICS
B. Sc. (Hons.) M. Sc. (Mathematics)

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Derive the expression for radial and transverse components of velocity of a particle moving along a plane curve $r=f(\theta)$.
(b) A particle describes an angular spiral $r=a e^{m \theta}$ with constant angular velocity. Find its velocity and acceleration.
2. (a) Prove that acceleration of a point moving in a curve with uniform speed is $\rho\left(\frac{\partial \psi}{d t}\right)^{2}$.
(b) A weight is attached to the lower end of a light spiral spring whose upper end is fixed and released. If it oscillates through a space of $\frac{1}{2} \mathrm{~m}$, then what is the period of oscillation?

Unit II

3. (a) A force of 150 newtons acts on a body of mass 15 kg for 5 minutes and then ceases. What is the force required to bring the body to rest in 2 minutes ?
(b) An engine of horse power H, draws a train M tons up an incline of 1 in n against a resistance of $m \mathrm{lbs}$ wt per ton. Show that maximum speed of train is $\frac{550 \mathrm{Hn}}{\mathrm{M}(2240+m n)} \mathrm{ft} / \mathrm{sec}$.
4. (a) State and prove the principle of conservation of energy, moving under the conservation system of forces.
(b) Show that if a mass m is allowed to slide down a smooth inclined plane, the sum of potential and kinetic energies at every instant is the same.

Unit III

5. (a) A particle slides down the outside of a smooth verticle circle starting from rest at the highest point. Discuss the motion.
(b) A particle attached to a fixed peg O by a string of length l is lifted up with the string horizontal and then let go. Prove that when the string makes an angle θ with horizontal, the resultant acceleration is $g \sqrt{\left(1+3 \sin ^{2} \theta\right)}$.
6. (a) Two particles are let drop the cusp of a cycloid down the curve at an interval of time t. Prove that they will meet in time $2 \pi \sqrt{\frac{a}{g}}+\frac{t}{2}$.
(b) Show that a given gun will shoot three times as high when elevated at an angle of 60° and when elevated at 30°, but will carry the same horizontal range.

Unit IV

7. (a) A particle moves in an ellipse under a force which is always directed towards its focus; find (i) the law of force (ii) the velocity at any point of its path.
(b) The greatest and least velocities of a certain planet in its orbit round the sun are $30 \mathrm{~km} / \mathrm{sec}$ and $29.2 \mathrm{~km} / \mathrm{sec}$ respectively. Find the eccentricity of the orbit.
8. (a) A heavy particle moves in a smooth sphere. Show that if the velocity be that due to the level of the centre, the reaction of the surface will vary at the depth below the centre.
(b) A smooth helix is placed with its axis vertical and a small bead slides down it under gravity. Show that it makes its first revolution from rest in time
$2 \sqrt{\frac{\pi a}{g \sin \alpha \cos \alpha}}$, where α is the angle of the helix.
