No. of Printed Pages: 03 Roll No.

FF342

B. Sc. (Hons.)-M. Sc. (Mathematics) EXAMINATION, 2020

(Sixth Semester)

(5 Year Integrated Course)

(B Scheme) (Re-appear)

MAT414H

LINEAR ALGEBRA

Time: 2½ Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Four questions in all. All questions carry equal marks.

- 1. (a) Let $V = \{a_0 + a_1x + \dots + a_nx^n : a_i \in F \text{ for } 0 \le i \le n, n \text{ is an integer}\}$, the set of all polynomials having coefficients in field F. Show that $(V, +, \cdot)$ is a vector space over F where the binary operations vector addition (+) and scalar multiplication (\cdot) are referred as the addition of polynomials and the product of a polynomial by an element of F respectively.
 - (b) Let F be a field, $V = \{(x_1, x_2,x_n) : x_i \in F \text{ for } 1 \le i \le n\}$ be a vector space over F and W be the set of all solutions (x_1, x_2,x_n) of a pair of linear equations:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$$
 and $b_1x_1 + b_2x_2 + \dots + b_nx_n = 0$.
Show that W is a subspace of V over the field F, where a_i , $b_i \in F$ for $1 \le i \le n$.

- 2. (a) Let W be a subspace of an *n*-dimensional vector space V over a field F such that (v_1, v_2, \ldots, v_k) is a linearly independent subset of V over F such that $v_i \geq W$ for all $1 \leq i \leq k$. Then prove that the set $\{W + v_i : 1 \leq i \leq k\}$ forms a basis of the quotient space V/W. Deduce that the dimension of W is n k.
 - (b) Define the sum of two subspaces of a vector space. If W_1 and W_2 are two subspaces of a vector space V over a field F. Show that $W_1 + W_2$ is also a subspace of V generated by $W_1 \cup W_2$.
- **3.** (a) Find a linear transformation which maps (1, 1, 1), (1, 1, 0), (1, 0, 0) in \mathbb{R}^3 to (2, 1), (2, 1) in \mathbb{R}^2 . Also find the null space of the transformation. Is the transformation one-one?
 - (b) For a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that T(x, y) = (x y, -x + y, -x), Find a basis and dimension of its range space and its null space.
- **4.** (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, x y, 2x + z). Find the range space, null space, rank and nullity of T and verify that Rank(T) + Nullity(T) = 3.
 - (b) Define dual space of a vector space. If $S = \{(-1, 1, 1), (1, -1, 1), (1, 1, -1)\}$, then find the dual basis of S.
- 5. (a) Prove that the mapping $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by T(x, y) = (x y, -x + 2y, -x) is a linear transformation. Also write the associated matrix. Is T singular? Justify your reply.
 - (b) A linear transformation T : U → V of vector space U and V over the same field F is non-singular if and only if T maps every linearly independent subset of U onto a linearly independent subset of V.
- **6.** (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defiend by T(x, y, z) = (2y + z, x 4y, 3x). Find the matrix of T with respect to basis $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0). \text{ Also verify } [T, B][u, B] = [T(u), B] \text{ for all } u \in \mathbb{R}^3.$
 - (b) If T: $\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + y, + z, 2y + z, 2y + 3z). Find the eigen values and the basis for the eigen space.

- 7. (a) State and prove Bessel's inequality.
 - (b) Prove that every finite dimensional vector space is an inner product space.
- **8.** (a) Define a self-adjoin operator. If A and B are linear operators on a finite dimensional inner product space V(F). Prove that AB = BA if and only if A' = A and B' = B.
 - (b) Let S be the subspace of an inner product space \mathbb{R}^4 spanned by the vectors $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5), v_3 = (1, -3, -4, -2)$ in \mathbb{R}^4 . Apply the Gram-Schmidt orthogonal process to find an orthogonal basis and then an orthonormal basis of S.