GG552

B. Sc. (Hons.)-M. Sc. Dual Degree EXAMINATION, 2021

(Seventh Semester)

(B Scheme) (Main Only)

CHEMISTRY

DCH403

Inorganic Chemistry-VII

Time: 2½ Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt Four questions in all. All questions carry equal marks.

- **1.** (a) What is the magnetic moment of $[RhF_6]^{3-}$ in B.M. ?
 - (b) Draw the plot of χT versus T (where χ is molar magnetic susceptibility and T is the temperature) for a paramagnetic complex, which strictly follows Curie equation.
 - (c) Which two among $[Fe(CN)_6]^{3-}$, $[FeF_6]^{3-}$, $[Cu(bpy)_2]^{2+}$ and $[Mn(acac)_3]$ (acac = acetyl acetonate anion) show the same spin-only magnetic moment?
 - (d) Describe Kurnakov test.
 - (e) Give the reason for intense blue colour of Prussian blue.
 - (f) The complex $[TiCl_6]^{3-}$ absorbs at 13000 cm⁻¹. What is the value of Δ_0 ?
 - (g) What product is formed when oxalic acid reacts with $[Pt(NH_3)_2Cl_2]$?
 - (h) Predict the number of unpaired electron in $[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{4-}$. Calculate CFSE for the same.

- (i) Among $(CH_3)_3P$, NO^+ , CN^- and I_3^- ligands, which one is not a π -acceptor ligand ?
- (j) In the trigonal bipyramidal crystal field, which *d*-orbital exhibit the highest energy ?
- 2. (a) What is the effect of π -donor and π -acceptor ligands on Δ_0 ? Explain on the basis of ligand field theory.
 - (b) Pt (II) makes square planar complexes almost exclusively. Explain with the help of crystal field theory.
 - (c) Draw the crystal field splitting diagram for [CoCl₄]²⁻ and calculate CFSE.
- **3.** (a) Tetrahedral complexes are high spin. Explain with examples.
 - (b) Define Jahn-Teller theorem. Giving reason, explain in which case this effect would be observed.

$$t_{2g}^3 e_g^1$$
 or $t_{2g}^6 e_g^2$

- (c) Which complex in each of the following pairs will have greater crystal field splitting and why?
 - (i) $[Co(en)_3]^{3+}$ or $[Rh(en)_3]^{3+}$
 - (ii) $[Cr(CN)_6]^{3-}$ or $[Cr(NH_3)_6]^{3+}$
 - (iii) $[Fe(H_2O)_6]^{3+}$ or $[Fe(CN)_6]^{3-}$
 - (iv) $[Co(NO_2)_6]^{3-}$ or $[Co(ONO)_6]^{3-}$
- **4.** (a) The three absorption bands for $[CrF_6]^{3-}$ are observed in an electronic spectrum at 14900 cm⁻¹, 22700 cm⁻¹ and 34400 cm⁻¹. Determine the values of B' and Δ_0 .

- (b) Characterize the origin of electronic transitions in the following and indicate the intensity of the complexes:
 - MnO_4^- , $[MnBr_4]^{2-}$, $[CoCl_4]^{2-}$, $[Fe(bipy)_3]^{2+}$, $[Mn(H_2O)_6]^{2+}$, $Cr_2O_7^{2-}$, $Ni(CO)_4$ and $KFe[Fe(CN)_6]$.
- 5. (a) The single absorption bands for $[Ti(H_2O)_6]^{3+}$ and $[Ti(NCS)_6]$ occur in their absorption spectra at 470 nm and 544 nm respectively (i) Calculate crystal field splitting energies for these complex ions in kJ mol⁻¹, (ii) Also predict the colours of these complex ions.
 - (b) High spin octahedral complexes of Mn²⁺ ion are colourless. Explain.
- **6.** (a) Using crystal field theory, explain the structure and magnetic properties of $[NiCl_4]^{2-}$, $[NiCN_4]^{2-}$ and $[Ni(CO)_4]$.
 - (b) Using the crystal field theory, calculate the magnetic moments in terms of B.M. of the following complexes:
 - (i) $[CoF_6]^{3-}$
 - (ii) [MnBr₄]²⁻
 - (iii) $[Co(NH_3)_6]^{2+}$
 - (iv) $[Co(H_2O)_6]^{3+}$
 - (v) $[Ni(CO)_4]$
 - (vi) $[Ru(NH_3)_6]^{3+}$
 - (vii) $[RhF_6]^{3-}$
- 7. (a) The magnetic moment of [Fe(phen)₂(NCS)₂] varies with temperature. The magnetic moments at 200 K and 50 K are 4.9 B.M. and 0 B.M. respectively. Write the *d*-electron configurations of Fe at both temperatures and give reason for the observed change in the magnetic moment. (phen = 1, 10 pheanthroline)

- What change in magnetic properties (if any) can be expected when NO₂ligands in $[Co(NO_2)_6]^{3-}$ are replaced by Cl⁻ ligands?
- 8. (a) For the following general reaction:

8

$$[\text{Co(NH}_3)_5 \text{X}]^{3+} + [\text{Cr(H}_2 \text{O})_6]^{2+} + \underbrace{5\text{H}_3 \text{O}^+}_{} \qquad [\text{Co(H}_2 \text{O})_6]^{2+} + \underbrace{5\text{NH}_4^+}_{}$$

Rate constant increases in the order $X^- = F^-$, Cl^- , Br^- , I^- . Explain it and also give the mechanism of above reaction.

Arrange the following complexes in the increasing order of inertness: (b)

$$[Cr(CN)_6]^{3-}$$
, $[Mn(CN)_6]^{2-}$, $[Co(CN)_6]^{3-}$, $[Co(CN)_6]^{4-}$

- 9. Explain the rate enhancement for the following reaction pairs:

- $[Ru(phen)_3]^{2+} + [Ru(phen)_3]^{3+}$ 10⁷ m⁻¹s⁻¹
- What is trans effect ? What product is obtained when [Pt(Cl)₄]²⁻ is treated with:
 - NH₃ followed by R₃P (i)
 - (ii) R₃P followed by NH₃?