No. of Printed Pages: 02 Roll No.

HH343

M. Sc. EXAMINATION, 2020

(5 Year Integrated)

(Eighth Semester)

(B Scheme)

(Main & Re-appear)

MATHEMATICS

MAT516H

General Topology

B. Sc. (Hons.) M. Sc. (Mathematics)

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Prove that every metric space is normal.
 - (b) Prove that every completely normal space is normal and hence every T_5 -space is a T_4 -space.
- **2.** (a) Let (X, T) be a topological space. If X is a Hausdorff space, then so is quotient space.
 - (b) State and prove Urysohn's lemma.

(1-07/26) M-HH343

Unit II

- 3. (a) Let (X, T_1) and (Y, T_2) be two topological spaces. Then the collection $\{G \times H : G \in T_1 \text{ and } H \in T_2\}$ is a base for some topology for $X \times Y$.
 - (b) The product space is connected ⇔ each space is connected.
- **4.** (a) State and prove Tychonoff product theorem.
 - (b) The product space $X = \pi \{X_{\lambda} : \lambda \in \Lambda\}$ is T_1 iff each coordinate space X_{λ} is T_1 .

Unit III

- 5. (a) Let (X, T) be a topological space and $Y \subset X$. Then a point $x_0 \in X$ is an accumulation point of Y iff there exists a net in $Y \{x_0\}$ converging to x_0 .
 - (b) A topological space (X, T) is Hausdorff iff every net in X can converge to at most one point.
- **6.** (a) Let **A** be a non-empty family of subsets of a set X. Then there exists a filter on X containing **A** iff **A** has the F.I.P.
 - (b) A topological space (X, T) is Hausdorff iff every convergent filter in X has a unique limit.

Unit IV

- 7. (a) Let **A** be an open, locally finite cover of a normal space X. Then for each $A \in A$, there exists an open set G(A) s.t. $\overline{G(A)} \subset A$ and the family $\{G(A) : A \in A\}$ covers X.
 - (b) Prove that every regular Lindeloff space is paracompact.
- **8.** (a) State and prove Michaell theorem on characterisation of paracompactness in regular spaces.
 - (b) State and prove Nagata-Smirnov metrization theorem.