II344

M. Sc. (5 Year Integrated) EXAMINATION, 2020
(Ninth Semester)
(B. Scheme) (Re-appear)
MATHEMATICS
MAT617H

Analytical Number Theory and Cryptography
B.Sc. (Hons.) M.Sc. Mathematics

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

1. (a) Prove that the primes of the form $4 k+1$ are infinite.
(b) Define Format and Mersenne numbers and prove that the format number F_{5} is divisible by 641.
2. (a) Prove that π is irrational.
(b) Prove that the constant $\sqrt{5}$ appearing Hurwitz Theorem is the best possible.
P.T.O.

Unit II

3. (a) Prove that all the integral solutions of $x^{2}+y^{2}=z^{2}, x>0, y>0, z>0$, $(x, y)=1,2 / x$ are given by $x=2 a b, y=a^{2}-b^{2}, z=a^{2}+b^{2}$, where $a>b>0,(a, b)=1$ and a and b are of opposite parity.
(b) Define linear diophantine equation and find all solutions in positive integers of $5 x+3 y=52$.
4. (a) State and prove Lagrange's four square theorem.
(b) Define $\mathrm{G}(k)$ and prove that $\mathrm{G}(2)=4$.

Unit III

5. (a) Let p be an odd prime. Then prove that:
(i) $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$
(ii) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
(iii) If $(a, p)=1$, then $\left(\frac{a^{2} b}{p}\right)=\left(\frac{b}{p}\right)$
(iv) $\left(-\frac{1}{p}\right)=(-1)^{(p-1) / 2}$.
(b) Define the group U_{n} and prove that if p is an odd prime, then $\mathrm{U}_{p^{2}}$ is cyclic.
6. (a) Prove that the group $\mathrm{U}_{2} \mathrm{e}$ is not cyclic for $e \geq 3$ and $\mathrm{U}_{2} e=\left\{ \pm 3^{i} \mid 0 \leq i<2^{e-2}\right\}$ where $e \geq 3$.
(b) Prove that the set of quadratic residues modulo a prime forms a group under multiplication.

Unit IV

7. (a) What do you mean by monoalphabetic cipher and polyalphabetic cipher ? Explain by taking one example in each case.
(b) Explain RSA cryptosystem by taking a suitable example.
8. (a) The ciphertext message produced by the knapsack cryptosystem employing the super increasing sequence $1,3,5,11,35$, modulus $m=73$ and multiplier $a=5$ is $55,15,124,109,25,34$. Obtain the plaintext message.
(b) Explain the ElGamal cryptosystem by taking an example.
