No. of Printed Pages: 03 Roll No.

18A5

B. Tech. EXAMINATION, 2020

(Second Semester)

(C Scheme) (Re-appear Only)

INTRODUCTION TO ELECTROMAGNETIC THEORY

PHY101C

(Common for All Branches)

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. **9** is compulsory. All questions carry equal marks. Draw neat diagram wherever applicable.

Unit I

- 1. (a) Derive expression for electric field due to a continuous charge distribution. 7
 - (b) What are free and bound charges?

3

5

(c) Derive boundary conditions in terms of electric displacement vector.

Or

2. (a) State Laplace and Poisson's equations.

7

(b) Define curl of electrostatic field vector.

3

(c) Explain the electric field produced by a uniformly polarized sphere.

5

Unit II

3.	(a)	What do you understand by divergence and curl of magnetic field?	4
	(b)		7
	(c)	Discuss magnetization in materials.	4
		Or	
4.	(a)	State Bio-Savart Law. Define the terms used.	4
	(b)	Define vector potential. Calculate vector potential due to a given magnetic	c
		field using Stokes' theorem.	7
	(c)	Differentiate between ferromagnetic, paramagnetic and diamagnetic materials	3.
			4
		Unit III	
5.	(a)	Derive expression for energy stored in magentic field.	7
	(b)	State Poynting theorem. Derive expression for flow of energy in electromagnetic	c
		field.	8
		Or	
6.		e continuity equation for current densities. Derive modified equation for the of magnetic field to satisfy cointinuity equation.	
		Unit IV	
7.	(a)	Derive wave equation for electromagnetic waves in vacuum using Maxwell' equations and state the momentum carried by electromagnetic waves it vacuum.	
	(b)	Explain wave characteristics on finite transmission lines.	5
	(c)	What are primary constants in transmission lines ?	3
(2)	(OCT	-20)M-18A5 2	

8.	(a)	Find expression for energy and resultant pressure carried out by elect	romagnetic	
		waves in vacuum.	5	
	(b)	State basic principle of transmission lines.	3	
	(c)	Prove the transverse nature of electromagnetic waves.	7	
Compulosry Questions from Entire Syllabus				
9.	(a)	Differentiate between bound charges and free charges.	3	
	(b)	Define magnetic susceptibility.	3	
	(c)	Write Maxwell's equation in vacuum.	3	
	(d)	Discuss polarization of materials by electromagnetic waves.	3	
	(e)	Define Poynting vector.	3	